Войти
Образование в России
  • История главного открытия XX века
  • Выбор есть Минский высший радиотехнический колледж проходной балл
  • Ребусы по русскому языку Придумать ребусы по русскому языку
  • Анализ «Премудрый пескарь» Салтыков-Щедрин Описание сказки салтыкова щедрина премудрый пескарь
  • Роль эмоций и чувств в работе педагога методическая разработка на тему
  • В чем заключается смысл 3 закона менделя
  • Что такое анализатор в биологии определение. Анализаторы - биология егэ

    Что такое анализатор в биологии определение. Анализаторы - биология егэ

    Анализаторы - это система чувствительных нервных образований, осуществляющих анализ и синтез изменений, происходящих во внешней среде и в организме.

    По И. П. Павлову анализатор состоит из трех отделов: периферического, то есть воспринимающего (рецептора, или органа чувств), промежуточного, или проводникового (проводящие пути и промежуточные нервные центры), и центрального, или коркового (нервные клетки коры больших полушарий). К периферическому отделу анализаторов относятся все , а также рецепторные образования и свободные нервные окончания, находящиеся во внутренних органах и мышцах.

    Рецепторный аппарат каждого анализатора приспособлен к трансформации энергии определенного вида раздражения в нервное возбуждение (см. ). В корковом отделе анализатора нервное возбуждение превращается в ощущение. Деятельность коркового отдела обеспечивает приспособительные реакции организма к изменениям внешней среды.

    Анализаторы - система чувствительных (афферентных) нервных образований, осуществляющих анализ и синтез явлений внешней и внутренней среды организма. Термин введен в неврологическую литературу , согласно представлениям которого каждый анализатор состоит из специфических воспринимающих образований (см. Рецепторы, Органы чувств), составляющих периферический отдел анализаторов, соответствующих нервов, связывающих эти рецепторы с различными этажами ЦНС (проводниковая часть), и мозгового конца, представленного у высших животных в коре больших полушарий головного мозга.

    В зависимости от рецепторной функции различают анализаторы внешней и внутренней среды. Первые рецепторами обращены к внешней среде и приспособлены анализировать явления, происходящие в окружающем мире. К таким анализаторам относятся зрительный, слуха, кожный, обонятельный, вкусовой (см. Зрение, Слух, Осязание, Обоняние, Вкус). Анализаторы внутренней среды - афферентные нервные приборы, рецепторные аппараты которых находятся во внутренних органах и приспособлены к анализированию того, что происходит в самом организме. К таким анализаторам относится также двигательный (рецепторный аппарат его представлен мышечными веретенами и рецепторами Гольджи), обеспечивающий возможность точного управления опорно-двигательным аппаратом (см. Двигательные реакции). Существенную роль в механизмах статокинетической координации играет и другой внутренний анализатор - вестибулярный, тесно взаимодействующий с анализатором движения (см. Равновесие тела). Двигательный анализатор у человека включает и специальный отдел, обеспечивающий передачу сигналов с рецепторов органов речи в высшие этажи ЦНС. В связи с важным значением этого отдела в деятельности мозга человека его иногда рассматривают как «речедвигательный анализатор».

    Рецепторный аппарат каждого анализатора приспособлен к трансформации определенного вида энергии в нервное возбуждение. Так, рецепторы звука избирательно реагируют на звуковые раздражения, света - на световые, вкуса - на химические, кожи - на тактильно-температурные и т. д. Специализация рецепторов обеспечивает анализ явлений внешнего мира на их отдельные элементы уже на уровне периферического отдела анализатора.

    Наиболее сложный и тонкий анализ, дифференциация и последующий синтез внешних раздражений осуществляются в корковых отделах анализаторов. Методом условных рефлексов в сочетании с экстирпацией мозговой ткани показано, что корковые отделы анализаторов состоят из ядер и рассеянных элементов.

    При разрушении ядер нарушается тонкий анализ, однако еще возможна грубая аналитико-синтетическая деятельность за счет рассеянных элементов. Такая анатомо-физиологическая организация обеспечивает динамичность и высокую надежность функций анализаторов.

    Биологическая роль анализаторов заключается в том, что они являются специализированными следящими системами, информирующими организм о всех событиях, происходящих в окружающей среде и внутри него. Из огромного потока сигналов, непрерывно поступающих в мозг по внешним и внутренним анализаторам, отбирается та полезная информация, которая оказывается существенной в процессах саморегулирования (поддержания оптимального, константного уровня функционирования организма) и активного поведения животных в окружающей среде. Эксперименты показывают, что сложная аналитико-синтетическая деятельность мозга, детерминированная факторами внешней и внутренней среды, осуществляется по полианализаторному принципу. Это означает, что вся сложная нейродинамика корковых процессов, формирующая целостную деятельность мозга, складывается из сложного взаимодействия анализаторов (см. ).

    Анализатор (греч. analysis - разложение, расчленение) - совокупность образований, активность которых обеспечивает анализ и обработку в нервной системе раздражителей, воздействующих на организм. Термин введен в 1909 году И.П. Павловым. Составными элементами любого А. являются периферические воспринимающие приборы - рецепторы, афферентные пути, переключательные ядра ствола мозга и таламуса и корковый конец А. - проекционные отделы коры больших полушарий.

    А. болевой (син. ноцицетивная система) - сенсорная система (см.), опосредующая восприятие болевых физических, химических раздражителей, оказывающих повреждающее действие на организм.

    А. вестибулярный - А., обеспечивающий анализ информации о положении и перемещениях тела в пространстве.

    А. вкусовой - А., обеспечивающий восприятие и анализ химических раздражителей при воздействии их на рецепторы языка и формирующий вкусовые ощущения.

    А. двигательный - понятие, введенное И.П. Павловым в 1911 г., когда он на основании опытов Н.И. Красногорского пришел к заключению, что двигательная область коры также является корковым концом анализатора - местом проекции путей, опосредующих проведение мышечной и суставной чувствительности, и обеспечивает таким образом восприятие (например, схему тела). Однако понятие А. д. оказывается более широким, чем другие аналогичные понятия, поскольку моторная область коры, являясь кориткальным отделом проприоцептивной сенсорной системы, одновременно оказывается местом конвергенции проекций от всех других сенсорных зон коры и как высший интегративный отдел мозга млекопитающих является "центральным аппаратом построения движений" и таким образом обеспечивает формирование целенаправленных реакций в ответ на внешние стимулы.

    А. зрительный - А., обеспечивающий анализ и обработку зрительных стимулов и формирующий зрительные ощущения и образы.

    А. интероцптивный - А., обеспечивающий восприятие и анализ информации о состоянии внутренних органов.

    А. кожный - часть соматосенсорной системы, обеспечивающая кодирование (см.) различных раздражителей (см.), воздействующих на кожные покровы тела. Во взаимодействии с другими сенсорными системами (см.) обеспечивает возможность сложных форм распознавания (например, стереогнозис). Периферические отделы представлены многочисленными рецепторами кожи. Проведение импульсации в ЦНС осуществляется элементами спинальных и черепно-мозговых ганглиев. Центральные пути проведения (в соматосенсорную область коры - у млекопитающих) представлены леминисковой и экстралеминисковой системами.

    А. обонятельный - А., обеспечивающий восприятие и анализ информации о веществах, соприкасающихся со слизистой оболочкой носовой полости, и формирующий обонятельные ощущения.

    А. проприоцептивный (лат. proprius собственный + capio принимать, воспринимать) - сенсорная система (см.), обеспечивающая кодирование информации об относительном положении частей тела.

    А. слуховой - А., обеспечивающий восприятие и анализ звуковых раздражений и формирующий слуховые ощущения и образы.

    А. температурный - часть соматосенсорной системы (см.), обеспечивающая кодирование (см.) степени изменения температуры среды, окружающей рецептивную зону (см.).

    Определения, значения слова в других словарях:

    Психологическая энциклопедия

    Функциональное образование ЦНС, осуществляющее восприятие и анализ информации о явлениях, происходящих во внешней среде и самом организме. Деятельность А. осуществляется определенными мозговыми структурами. Понятие введено И.П. Павловым, согласно концепции которого А. состоит из...


    Анализаторами называют системы, которые состоят из рецепторов, проводящих путей и центров в коре больших полушарий. Каждый анализатор обладает своей модальностью, то есть способом получения своей информации: зрительной, слуховой, вкусовой и другой. Возбуждения, возникающие в рецепторах органов зрения, слуха, прикосновения, имеют одну и ту же природу – электрохимические сигналы в форме потока нервных импульсов. Каждый анализатор состоит из трех отделов: периферического, проводникового и центрального. Анализаторами называют системы, которые состоят из рецепторов, проводящих путей и центров в коре больших полушарий. Каждый анализатор обладает своей модальностью, то есть способом получения своей информации: зрительной, слуховой, вкусовой и другой. Возбуждения, возникающие в рецепторах органов зрения, слуха, прикосновения, имеют одну и ту же природу – электрохимические сигналы в форме потока нервных импульсов. Каждый анализатор состоит из трех отделов: периферического, проводникового и центрального.



    Периферический отдел Рецепторы У человека выделяют следующие рецепторы: внешние зрительный слуховой тактильный болевой температурный обонятельный вкусовой внутренние давления кинетический вестибулярный Рецепторы У человека выделяют следующие рецепторы: внешние зрительный слуховой тактильный болевой температурный обонятельный вкусовой внутренние давления кинетический вестибулярный Периферический отдел представлен рецепторами чувствительными нервными окончаниями, обладающими избирательной чувствительностью только к определенному виду раздражителя. Рецепторы входят в состав соответствующих органов чувств. Периферический отдел представлен рецепторами чувствительными нервными окончаниями, обладающими избирательной чувствительностью только к определенному виду раздражителя. Рецепторы входят в состав соответствующих органов чувств.


    Нервные пути Проводниковый отдел анализатора представлен нервными волокнами, проводящими нервные импульсы от рецептора в центральную нервную систему (например, зрительный, слуховой, обонятельный нерв и т. п.). Проводниковый отдел анализатора представлен нервными волокнами, проводящими нервные импульсы от рецептора в центральную нервную систему (например, зрительный, слуховой, обонятельный нерв и т. п.).


    Зона коры больших полушарий Центральный отдел анализатора это определенный участок коры головного мозга, где происходит анализ и синтез поступившей сенсорной информации и преобразование ее в специфическое ощущение (зрительное, обонятельное и т. д.). Центральный отдел анализатора это определенный участок коры головного мозга, где происходит анализ и синтез поступившей сенсорной информации и преобразование ее в специфическое ощущение (зрительное, обонятельное и т. д.). Центральный отдел анализатора




    Орган зрения Значение зрения. Через зрительный анализатор человек получает основное количество информации. Окружающие нас предметы и явления, наше собственное тело мы воспринимаем прежде всего с помощью зрения. Благодаря зрению мы обучаемся многим бытовым и трудовым навыкам, обучаемся выполнению определенных правил поведения. Значит, в познании внешнего мира для человека зрение играет первостепенную роль. Значение зрения. Через зрительный анализатор человек получает основное количество информации. Окружающие нас предметы и явления, наше собственное тело мы воспринимаем прежде всего с помощью зрения. Благодаря зрению мы обучаемся многим бытовым и трудовым навыкам, обучаемся выполнению определенных правил поведения. Значит, в познании внешнего мира для человека зрение играет первостепенную роль.






    Нарушения зрения (продолжение) Дальнозоркость Дальнозоркость (гиперметропия) - это нарушение зрения, при котором изображение предмета формируется не на сетчатке, а за ней. Дальнозоркость (гиперметропия) - это нарушение зрения, при котором изображение предмета формируется не на сетчатке, а за ней. Близорукость - вид клинической рефракции, при которой преломляющая сила оптической системы глаза слишком велика и не соответствует длине его оси. На сетчатке получается изображение в кругах светорассеяния. Удаленные предметы кажутся расплывчатыми, смазанными, нерезкими, поэтому острота зрения ниже 1,0. Близорукость - вид клинической рефракции, при которой преломляющая сила оптической системы глаза слишком велика и не соответствует длине его оси. На сетчатке получается изображение в кругах светорассеяния. Удаленные предметы кажутся расплывчатыми, смазанными, нерезкими, поэтому острота зрения ниже 1,0. Близорукость


    Нарушение зрения Нарушения зрения. Одной из важных характеристик зрения является острота зрения. Острота зрения определяет предельную способность глаза различать мелкие детали в поле зрения. Острота зрения зависит от общей освещенности, контраста деталей изображения на определенном фоне и других причин. Наиболее часто встречающиеся нарушения зрения - это близорукость и дальнозоркость. Наличие этих нарушений устанавливает врач при измерении остроты зрения с помощью специальных таблиц. Схема хода лучей через преломляющие среды глаза


    Гигиена органа зрения Сохранению зрения способствуют следующие факторы: 1) хорошее освещение рабочего места, 2) расположение источника света слева, 3) расстояние от глаза до рассматриваемого предмета должно быть около 3035 см. Чтение лежа или в транспорте приводит к ухудшению зрения, так как из-за постоянно меняющегося расстояния между книгой и хрусталиком происходит ослабление эластичности хрусталика и ресничной мышцы. Глаза следует беречь от попадания в них пыли и других частиц, слишком яркого света. Сохранению зрения способствуют следующие факторы: 1) хорошее освещение рабочего места, 2) расположение источника света слева, 3) расстояние от глаза до рассматриваемого предмета должно быть около 3035 см. Чтение лежа или в транспорте приводит к ухудшению зрения, так как из-за постоянно меняющегося расстояния между книгой и хрусталиком происходит ослабление эластичности хрусталика и ресничной мышцы. Глаза следует беречь от попадания в них пыли и других частиц, слишком яркого света.



    Орган слуха Значение слуха. Чувство слуха – одно из главных в жизни человека. Слух и речь вместе составляют важное средство общения между людьми, служат основой взаимоотношений людей в обществе. Потеря слуха может привести к нарушениям в поведении человека. Глухие дети не могут научиться полноценной речи. С помощью слуха человек улавливает звуки, сигнализирующие о том, что происходит во внешнем мире, звуки окружающей нас природы – шорохи леса, пение птиц, звуки моря, а также различные музыкальные произведения. С помощью слуха восприятие мира становится ярче и богаче. Ухо и его функция. Звук, или звуковая волна, - это чередующееся разрежение и сгущение воздуха, распространяющееся во все стороны от источника звука. Источником звука может быть любое колеблющееся тело. Звуковые колебания воспринимаются нашим органом слуха. Значение слуха. Чувство слуха – одно из главных в жизни человека. Слух и речь вместе составляют важное средство общения между людьми, служат основой взаимоотношений людей в обществе. Потеря слуха может привести к нарушениям в поведении человека. Глухие дети не могут научиться полноценной речи. С помощью слуха человек улавливает звуки, сигнализирующие о том, что происходит во внешнем мире, звуки окружающей нас природы – шорохи леса, пение птиц, звуки моря, а также различные музыкальные произведения. С помощью слуха восприятие мира становится ярче и богаче. Ухо и его функция. Звук, или звуковая волна, - это чередующееся разрежение и сгущение воздуха, распространяющееся во все стороны от источника звука. Источником звука может быть любое колеблющееся тело. Звуковые колебания воспринимаются нашим органом слуха.


    Строение органа слуха В органе слуха различают наружное, среднее и внутреннее ухо. Наружное ухо состоит из ушной раковины и наружного слухового прохода. Обеспечивает улавливание и проведение звуковой волны к барабанной перепонке. Среднее ухо расположено внутри височной кости и состоит из полости, где находятся слуховые косточки - молоточек, наковальня и стремечко, и слуховой трубы (евстахиевой трубы), соединяющей среднее ухо с носоглоткой. Молоточек соединен с барабанной перепонкой, стремечко - с перепонкой овального окошка слуховой улитки. Слуховые косточки, взаимодействуя как рычаги, передают колебания от барабанной перепонки к жидкости, заполняющей внутреннее ухо. Внутреннее ухо состоит из улитки, системы трех, полукружных каналов, образующих, костной лабиринт, в котором расположен перепончатый лабиринт, заполненный жидкостью. В спирально завитой улитке помещаются слуховые рецепторы - волосковые клетки. В органе слуха различают наружное, среднее и внутреннее ухо. Наружное ухо состоит из ушной раковины и наружного слухового прохода. Обеспечивает улавливание и проведение звуковой волны к барабанной перепонке. Среднее ухо расположено внутри височной кости и состоит из полости, где находятся слуховые косточки - молоточек, наковальня и стремечко, и слуховой трубы (евстахиевой трубы), соединяющей среднее ухо с носоглоткой. Молоточек соединен с барабанной перепонкой, стремечко - с перепонкой овального окошка слуховой улитки. Слуховые косточки, взаимодействуя как рычаги, передают колебания от барабанной перепонки к жидкости, заполняющей внутреннее ухо. Внутреннее ухо состоит из улитки, системы трех, полукружных каналов, образующих, костной лабиринт, в котором расположен перепончатый лабиринт, заполненный жидкостью. В спирально завитой улитке помещаются слуховые рецепторы - волосковые клетки.



    Слуховой анализатор Слуховое восприятие. В головном мозге происходит различение силы, высоты и характера звука, его местоположения в пространстве. Мы слышим двумя ушами, и это имеет большое значение для определения направления звука. Если звуковые волны приходят одновременно в оба уха, то мы воспринимаем звук посередине (спереди и сзади). Если звуковые волны чуть раньше придут в одно ухо, чем в другое, то мы воспринимаем звук либо справа, либо слева. Слуховое восприятие. В головном мозге происходит различение силы, высоты и характера звука, его местоположения в пространстве. Мы слышим двумя ушами, и это имеет большое значение для определения направления звука. Если звуковые волны приходят одновременно в оба уха, то мы воспринимаем звук посередине (спереди и сзади). Если звуковые волны чуть раньше придут в одно ухо, чем в другое, то мы воспринимаем звук либо справа, либо слева. Схема передачи звуковых волн на слуховые рецепторы




    Гигиена слуха Профилактика предохранения органов слуха от вредных воздействий и проникновения инфекций. Гигиена ежедневного мытья ушей. Намыльте руки, введите мизинец в наружный слуховой проход и сделайте несколько вращательных движений, таким же образом намыльте ушную раковину. Промойте ухо чистой водой и промокните полотенцем или сухой салфеткой. Ушная сера выделяется постоянно. Она содержит смягчающие и противомикробные вещества. Но может привести к серным пробкам. Провоцирует повышенную секрецию серы регулярное очищение ушей ватными палочками, спичками, шпильками. При инфекционных заболеваниях (грипп, ангина, корь) микробы из носоглотки могут проникнуть через слуховую трубу в полость среднего уха и вызвать воспаление. Производственный шум - сильные шумы, постоянно действующие на организм. Они могут приводить к ослаблению слуха или его полной потере, снижать работоспособность, повышать утомляемость, вызывать бессонницу, а также быть причиной возникновения ряда заболеваний (язва, гастрит, гипертония и др.). Следует носить наушники или беруши. Через чур громкая музыка, длительное прослушивание музыки через наушники, так же снижает остроту слуха. Попадание воды в уши приводит к ощущению заложенности, ухудшению слуха, а при длительном воздействии к сильной боли. Чтобы избавиться от недавно попавшей воды, необходимо лечь на спину, а затем медленно (примерно за 5 секунд) повернуть голову на больное ухо. После этого вода выльется из уха. Профилактика предохранения органов слуха от вредных воздействий и проникновения инфекций. Гигиена ежедневного мытья ушей. Намыльте руки, введите мизинец в наружный слуховой проход и сделайте несколько вращательных движений, таким же образом намыльте ушную раковину. Промойте ухо чистой водой и промокните полотенцем или сухой салфеткой. Ушная сера выделяется постоянно. Она содержит смягчающие и противомикробные вещества. Но может привести к серным пробкам. Провоцирует повышенную секрецию серы регулярное очищение ушей ватными палочками, спичками, шпильками. При инфекционных заболеваниях (грипп, ангина, корь) микробы из носоглотки могут проникнуть через слуховую трубу в полость среднего уха и вызвать воспаление. Производственный шум - сильные шумы, постоянно действующие на организм. Они могут приводить к ослаблению слуха или его полной потере, снижать работоспособность, повышать утомляемость, вызывать бессонницу, а также быть причиной возникновения ряда заболеваний (язва, гастрит, гипертония и др.). Следует носить наушники или беруши. Через чур громкая музыка, длительное прослушивание музыки через наушники, так же снижает остроту слуха. Попадание воды в уши приводит к ощущению заложенности, ухудшению слуха, а при длительном воздействии к сильной боли. Чтобы избавиться от недавно попавшей воды, необходимо лечь на спину, а затем медленно (примерно за 5 секунд) повернуть голову на больное ухо. После этого вода выльется из уха.



    Орган равновесия Чувство равновесия. В лабиринте внутреннего уха располагается орган равновесия - вестибулярный аппарат, который постоянно контролирует положение нашего тела в пространстве. С его помощью мы можем выполнять сложные движения. Постоянное поддержание равновесия необходимо для нормальной ходьбы, бега. Для выполнения многих трудовых навыков, для ориентации тела человека в пространстве. Для восприятия любых изменений положения тела существуют специальные вестибулярные рецепторы, которые находятся во внутреннем ухе. Вестибулярный аппарат состоит из двух маленьких мешочков и трех полукружных каналов. Полукружные каналы расположены в трех взаимно перпендикулярных плоскостях. Эти плоскости соответствуют трем измерениям пространства; высоте, длине и ширине. Полукружные каналы заполнены студенистой жидкостью. Внутри каждого канала есть рецепторы – чувствительные волосковые клетки. При любом движении головы или туловища или при вращении жидкости смещается, давит на волоски и возбуждает рецепторы. Информация об изменении положения тела поступает в головной мозг. Чувство равновесия. В лабиринте внутреннего уха располагается орган равновесия - вестибулярный аппарат, который постоянно контролирует положение нашего тела в пространстве. С его помощью мы можем выполнять сложные движения. Постоянное поддержание равновесия необходимо для нормальной ходьбы, бега. Для выполнения многих трудовых навыков, для ориентации тела человека в пространстве. Для восприятия любых изменений положения тела существуют специальные вестибулярные рецепторы, которые находятся во внутреннем ухе. Вестибулярный аппарат состоит из двух маленьких мешочков и трех полукружных каналов. Полукружные каналы расположены в трех взаимно перпендикулярных плоскостях. Эти плоскости соответствуют трем измерениям пространства; высоте, длине и ширине. Полукружные каналы заполнены студенистой жидкостью. Внутри каждого канала есть рецепторы – чувствительные волосковые клетки. При любом движении головы или туловища или при вращении жидкости смещается, давит на волоски и возбуждает рецепторы. Информация об изменении положения тела поступает в головной мозг.



    Орган обоняния Обоняние осуществляется с помощью рецепторов, которые находятся в слизистой оболочке носовой полости. Клетки этих рецепторов имеют постоянно колеблющиеся реснички. Каждая обонятельная клетка способна обнаружить вещество определенного состава. При взаимодействии с ним она посылает нервные импульсы в мозг. Обоняние осуществляется с помощью рецепторов, которые находятся в слизистой оболочке носовой полости. Клетки этих рецепторов имеют постоянно колеблющиеся реснички. Каждая обонятельная клетка способна обнаружить вещество определенного состава. При взаимодействии с ним она посылает нервные импульсы в мозг. Человека постоянно окружает множество различных запахов, которые имеют большое значение в жизни. Они сигнализируют о предстоящих событиях: например, обнаружен запах бытового газа – значит, надо перекрыть газовые краны, ощущается запах несвежей пищи – надо отказаться от нее. В самой верхней части носовой полости расположен орган обоняния. Это скопление обонятельных рецепторов, имеющих булавовидную форму и снабженных ресничками. Именно эти реснички и принимают на себя молекулы пахучих веществ. Затем по нервным волокнам к мозгу направляются импульсы, сигнализирующие о запахе. Обонятельные рецепторы очень чувствительны – достаточно одной десятимиллионной доли грамма пахучего вещества, чтобы его воспринял человек. Самые чувствительные современные приборы не могут состязаться с обонянием человека. Пахучее вещество должно быть летучим, растворимым в воде или в жирах. Только при этих условиях наш орган обоняния может его ощутить и оценить. Человека постоянно окружает множество различных запахов, которые имеют большое значение в жизни. Они сигнализируют о предстоящих событиях: например, обнаружен запах бытового газа – значит, надо перекрыть газовые краны, ощущается запах несвежей пищи – надо отказаться от нее. В самой верхней части носовой полости расположен орган обоняния. Это скопление обонятельных рецепторов, имеющих булавовидную форму и снабженных ресничками. Именно эти реснички и принимают на себя молекулы пахучих веществ. Затем по нервным волокнам к мозгу направляются импульсы, сигнализирующие о запахе. Обонятельные рецепторы очень чувствительны – достаточно одной десятимиллионной доли грамма пахучего вещества, чтобы его воспринял человек. Самые чувствительные современные приборы не могут состязаться с обонянием человека. Пахучее вещество должно быть летучим, растворимым в воде или в жирах. Только при этих условиях наш орган обоняния может его ощутить и оценить.



    Орган вкуса Вкус - ощущение сложное. Оно, как правило, возникает при восприятии пищи одновременно с запахом. Все вещества, которые растворяются в воде, обладают вкусом. Вкусовые рецепторы расположены на поверхности языка – на вкусовых сосочках. Разные участки языка по-разному ощущают вкус: кончик языка более всего чувствителен к сладкому, задняя часть языка – к горькому, боковые края – к кислому, передняя и боковые части языка – к соленому. По нервным волокнам сигналы поступают в определенные отделы головного мозга. При обычном восприятии пищи работают все вкусовые рецепторы языка. Из четырех простых вкусов: кислого, сладкого, горького и соленого – мозг создает сложный вкусовой образ, который возникает, когда мы едим мороженое, лимон, арбуз, клубнику и другое. Обоняние обязательно участвует в восприятии пищи. Вкус - ощущение сложное. Оно, как правило, возникает при восприятии пищи одновременно с запахом. Все вещества, которые растворяются в воде, обладают вкусом. Вкусовые рецепторы расположены на поверхности языка – на вкусовых сосочках. Разные участки языка по-разному ощущают вкус: кончик языка более всего чувствителен к сладкому, задняя часть языка – к горькому, боковые края – к кислому, передняя и боковые части языка – к соленому. По нервным волокнам сигналы поступают в определенные отделы головного мозга. При обычном восприятии пищи работают все вкусовые рецепторы языка. Из четырех простых вкусов: кислого, сладкого, горького и соленого – мозг создает сложный вкусовой образ, который возникает, когда мы едим мороженое, лимон, арбуз, клубнику и другое. Обоняние обязательно участвует в восприятии пищи.



    Орган осязания Кожное чувство. Кожа – это важнейший приемник информации от окружающего мира. Кожа воспринимает прикосновение и давление, тепло и холод, боль. Эти же ощущения воспринимает слизистая оболочка рта, носа, языка, глотки и даже внутренних органов. Но ощущение внутренних органов мы не может точно определить по месту (что и где болит), а ощущения на коже может определить с большой точностью. В коже много рецепторов боли, около 100 на 1 кв.см. Боль – это очень важный сигнал тревоги для организма, сигнал мобилизации на борьбу с опасностью. К болевым ощущениям человек привыкнуть не может. А вот к температурным воздействиям человек легко привыкает. Ощущение тепла возникает с помощью одних рецепторов, а холода – других рецепторов. Больше всего таких рецепторов расположено на лице и губах. Важнейшее кожное чувство – это осязание, ощущение прикосновения и давления. Оно создается благодаря специальным рецепторам. Их больше всего на подушечках пальцев, на губах и на кончике языка. Рецепторы представляют собой окончания нервов, завернутые в капсулу или оболочку. Наибольшей чувствительностью обладают кончики пальцев руки, где кожные рецепторы расположены очень плотно. Сигналы от кожных рецепторов по чувствительным нервам направляются в спинной и головной мозг. В коре головного мозга происходит различение и узнавание ощупываемых предметов. Кожное чувство. Кожа – это важнейший приемник информации от окружающего мира. Кожа воспринимает прикосновение и давление, тепло и холод, боль. Эти же ощущения воспринимает слизистая оболочка рта, носа, языка, глотки и даже внутренних органов. Но ощущение внутренних органов мы не может точно определить по месту (что и где болит), а ощущения на коже может определить с большой точностью. В коже много рецепторов боли, около 100 на 1 кв.см. Боль – это очень важный сигнал тревоги для организма, сигнал мобилизации на борьбу с опасностью. К болевым ощущениям человек привыкнуть не может. А вот к температурным воздействиям человек легко привыкает. Ощущение тепла возникает с помощью одних рецепторов, а холода – других рецепторов. Больше всего таких рецепторов расположено на лице и губах. Важнейшее кожное чувство – это осязание, ощущение прикосновения и давления. Оно создается благодаря специальным рецепторам. Их больше всего на подушечках пальцев, на губах и на кончике языка. Рецепторы представляют собой окончания нервов, завернутые в капсулу или оболочку. Наибольшей чувствительностью обладают кончики пальцев руки, где кожные рецепторы расположены очень плотно. Сигналы от кожных рецепторов по чувствительным нервам направляются в спинной и головной мозг. В коре головного мозга происходит различение и узнавание ощупываемых предметов.

    В нашей статье мы рассмотрим, что такое анализатор. Человек каждую секунду получает информацию из окружающей среды. Он настолько привык к этому, что даже не задумывается о механизмах ее поступления, анализа, формирования ответной реакции. Оказывается, за осуществление этой функции отвечают сложные системы.

    Что такое анализатор?

    Системы, которые обеспечивают получение информации об изменениях в окружающей среде и внутреннем состоянии организма, называются сенсорными. Этот термин происходит от латинского слова "сенсус", что в переводе означает "ощущение". Второе название подобных структур - анализаторы. Оно также отражает главную функцию.

    Что такое система, обеспечивающая восприятие различных видов энергии, их преобразование в нервные импульсы и поступление в соответствующие центры коры головного мозга.

    Виды анализаторов

    Несмотря на то, что человек постоянно сталкивается с целой гаммой ощущений, всего сенсорных систем пять. Шестым чувством часто называют интуицию - умение действовать без логического объяснения и предвидеть будущее.

    Позволяют воспринимать с ее помощью около 90 % информации об окружающей среде. Это изображение отдельных предметов, их форма, цвет, размер, расстояние к ним, движение и расположение в пространстве.

    Важное значение для общения и передачи опыта имеет слух. Мы воспринимаем различные звуки благодаря колебаниям воздуха. Слуховой анализатор преобразует их механическую энергию в который воспринимается головным мозгом.

    Способен воспринимать растворы химических веществ. Ощущения, которые он формирует, являются индивидуальными. Тоже самое можно сказать об обонятельной сенсорной. Ощущение запаха базируется на восприятии химических раздражителей внутренней и внешней среды.

    Последним анализатором является осязание. С помощью ее человек способен чувствовать не только само прикосновение, но и боль, и перепады температур.

    Общий план строения

    Теперь давайте разберемся, что такое анализатор с анатомической точки зрения. Любая сенсорная система состоит из трех отделов: периферического, проводникового и центрального. Первый представлен рецепторами. Это начало любого анализатора. Эти чувствительные образования воспринимают различные типы энергии. глаза раздражаются на свету. Обонятельный и вкусовой анализатор содержат хеморецепторы. Волосковые клетки внутреннего уха преобразуют механическую энергию колебательных движений в электрическую. Особенно богата рецепторами осязательная система. Они воспринимают вибрацию, прикосновение, давление, боль, холод и тепло.

    Проводниковый отдел состоит из нервных волокон. По многочисленным отросткам нейронов импульсы передаются от рабочих органов в кору головного мозга. Последний является центральным отделом сенсорных систем. Кора отличается высоким уровнем специализации. В ней различают двигательную, обонятельную, вкусовую, зрительную, слуховую зону. В зависимости от вида анализатора нейрон по проводниковому отделу доставляет нервные импульсы в определенный отдел.

    Адаптация анализаторов

    Нам кажется, что мы воспринимаем абсолютно все сигналы из окружающей среды. Ученые же утверждают обратное. Если бы так было на самом деле, мозг изнашивался бы гораздо быстрее. В результате - преждевременное старение.

    Важным свойством анализаторов является их способность к приспособлению уровня действия раздражителя. Это свойство называют адаптацией.

    Если солнечный свет очень интенсивный, зрачок глаза сужается. Так проявляется защитная реакция организма. А хрусталик глаза способен изменять свою кривизну. В результате мы можем рассматривать предметы, которые расположены на разном расстоянии. Такую способность зрительного анализатора называют аккомодацией.

    Человек способен воспринимать звуковые волны только с определенным значением колебаний: 16-20 тыс. Гц. Оказывается, мы многого не слышим. Частота ниже показателя 16 Гц называется инфразвуком. С его помощью медузы узнают о приближающемся шторме. Ультразвуком называют частоту свыше 20 кГц. Хоть человек и не слышит его, такие колебания могут проникать глубоко в ткани. На специальных приборах при помощи ультразвука можно получить фотографии внутренних органов.

    Компенсационная способность

    У многих людей наблюдаются нарушения определенных сенсорных систем. Причины этому могут быть как врожденные, так и приобретенные. Причем, если хотя бы один из отделов поврежден, функционировать перестает весь анализатор.

    Организм не имеет внутренних резервов для его восстановления. Но одна система может компенсировать другую. К примеру, слепые люди читают при помощи осязания. Ученые установили, что они слышат гораздо лучше, чем зрячие.

    Итак, что такое система, которая обеспечивает восприятие различных видов энергии из окружающей среды, их преобразование, анализ и формирование соответствующих ощущений или реакции.

    Анализатор (analyser) - термин, введенный И.П.Павловым для обозначения функциональной единицы, ответственной за прием и анализ сенсорной информации какой-либо одной модальности.

    Совокупность нейронов разных уровней иерархии, участвующих в восприятии раздражений, проведении возбуждения и в анализе раздражения.

    Анализатор, вместе с совокупностью специализированных структур (органов чувств), содействующих восприятию информации среды, называют сенсорной системой.

    Например, слуховая система представляет собой совокупность очень сложных взаимодействующих структур, включающую в себя наружное, среднее, внутреннее ухо и совокупность нейронов, называемых анализатором.

    Часто понятия «анализатор» и «сенсорная система» используют как синонимы.

    Анализаторы, как и сенсорные системы, классифицируют по качеству (модальности) тех ощущений, в формировании которых они участвуют. Это зрительный, слуховой, вестибулярный, вкусовой, обонятельный, кожный, вестибулярный, двигательные анализаторы, анализаторы внутренних органов, соматосенсорный анализаторы.

    Термин анализатор используется, главным образом, в странах бывшего СССР.

    В анализаторе выделяют три отдела :

    1. Воспринимающий орган или рецептор, предназначенный для преобразование энергии раздражения в процесс нервного возбуждения;

    2. Проводник, состоящий из афферентных нервов и проводящих путей, по которому импульсы передаются к вышележащим отделам центральной нервной системы;

    3. Центральный отдел, состоящий из релейных подкорковых ядер и проекционных отделов коры больших полушарий.

    Кроме восходящих (афферентных) путей существуют нисходящие волокна (эфферентные), по которым осуществляется регуляция деятельности нижних уровней анализатора со стороны его высших, в особенности корковых, отделов

    Анализаторы являются специальными структурами организма, служащими для ввода внешней информации в мозг для последующей ее переработки.

    Второстепенные термины

    · рецепторы;

    Структурная схема терминов

    В процессе трудовой деятельности организм человека приспосабливается к изменениям окружающей среды благодаря регулирующей функции центральной нервной системы (ЦНС). Человек связан со средой с помощью анализаторов , которые состоят из рецепторов, проводящих нервных путей и мозгового конца в коре головного мозга. Мозговой конец состоит из ядра и рассеянных по коре головного мозга элементов, обеспечивающих нервные связи между отдельными анализаторами. Например, когда человек ест, то он чувствует вкус, запах пищи и ощущает её температуру.

    Основная характеристика анализаторов – чувствительность .

    Нижний абсолютный порог чувствительности - минимальная величина раздражителя, на который начинает реагировать анализатор.

    Если раздражитель вызывает боль или нарушение деятельности анализатора - это будет верхний абсолютный порог чувствительности . Интервал от минимума до максимума определяет диапазон чувствительности (для звука от 20 Гц до 20 кГц).

    У человека рецепторы настроены на следующие раздражители:

    · электромагнитные колебания светового диапазона - фоторецепторы в сетчатке глаза;

    · механические колебания воздуха - фонорецепторы уха;

    · изменение гидростатического и осмотического давления крови - баро- и осморецепторы;

    · изменение положения тела относительно вектора гравитации - рецепторы вестибулярного аппарата.

    Кроме того, есть хеморецепторы (реагируют на воздействие химических веществ), терморецепторы (воспринимают температурные изменения как внутри организма, так и в окружающей среде), тактильные рецепторы и болевые.

    В ответ на изменение условий окружающей среды, чтобы внешние раздражители не вызывали повреждений и гибели организма, в нём формируются компенсаторные реакции, которые могут быть: поведенческими (изменение места пребывания, отдёргивание руки от горячего или холодного) или внутренними (изменение механизма терморегуляции в ответ на изменение параметров микроклимата).

    Человек обладает рядом важных специализированных периферических образований - органов чувств, обеспечивающих восприятие воздействующих на организм внешних раздражителей. К ним относятся органы зрения, слуха, обоняния, вкуса, осязания.

    Нельзя путать понятия «органы чувств» и «рецептор». Например, глаз - это орган зрения, а сетчатка - фоторецептор, один из компонентов органа зрения. Органы чувств сами по себе не могут обеспечить ощущение. Для возникновения субъективного ощущения необходимо, чтобы возбуждение, возникшее в рецепторах, поступило в соответствующий отдел коры больших полушарий.

    Зрительный анализатор включает в себя глаз, зрительный нерв, зрительный центр в затылочной части коры головного мозга. Глаз чувствителен к видимому диапазону спектра электромагнитных волн от 0,38 до 0,77 мкм. В этих границах различные диапазоны волн вызывают различные ощущения (цвета) при воздействии на сетчатку:

    0,38 - 0,455 мкм - фиолетовый цвет;

    0,455 - 0,47 мкм - синий цвет;

    0,47 - 0,5 мкм - голубой цвет;

    0,5 - 0,55 мкм - зеленый цвет;

    0,55 - 0,59 мкм - жёлтый цвет;

    0,59 - 0,61 мкм - оранжевый цвет;

    0,61 - 0,77 мкм - красный цвет.

    Приспособление глаза к различию данного объекта в данных условиях осуществляется путём трёх процессов без участия воли человека.

    Аккомодация - изменение кривизны хрусталика так, чтобы изображение предмета оказалось в плоскости сетчатки (наведение на фокус).

    Конвергенция - поворот осей зрения обоих глаз так, чтобы они пересеклись на объекте различия.

    Адаптация - приспособление глаза к данному уровню яркости. В период адаптации глаз работает с пониженной работоспособностью, поэтому необходимо избегать частой и глубокой переадаптации.

    Слух - способность организма принимать и различать звуковые колебания слуховым анализатором в диапазоне от 16 до 20000 Гц.

    Воспринимающая часть слухового анализатора - ухо, которое делится на три отдела: наружное, среднее и внутреннее. Звуковые волны, проникая в наружный слуховой проход, приводят в колебания барабанную перепонку и через цепь слуховых косточек передаются в полость улитки внутреннего уха. Колебания жидкости в канале приводит в движение волокна основной перепонки в резонанс звукам, поступающим в ухо. Колебания волокон улитки приводят в движение расположенные в них клетки кортиева органа, возникает нервный импульс, который передаётся в соответствующие отделы коры головного мозга. Порог болевых ощущений 130 - 140 дБ.

    Обоняние - способность воспринимать запахи. Рецепторы расположены в слизистой оболочке верхнего и среднего носовых ходов.

    Человек обладает разной степенью обоняния к различным пахучим веществам. Приятные запахи улучшают самочувствие человека, а неприятные - действуют угнетающе, вызывают отрицательные реакции вплоть до тошноты, рвоты, обморока (сероводород, бензин), способны изменять температуру кожи, вызывать отвращение к пище, приводить к подавленности и раздражительности.

    Вкус - ощущение, возникающее при воздействии определённых химических веществ, растворимых в воде, на вкусовые рецепторы, расположенные на различных участках языка.

    Вкус складывается из четырёх простых вкусовых ощущений: кислое, солёное, сладкое и горькое. Все остальные вариации вкуса - это комбинации из основных ощущений. Различные участки языка имеют разную чувствительность к вкусовым веществам: кончик языка чувствителен к сладкому, края языка - к кислому, кончик и край языка - к солёному, корень языка - к горькому. Механизм восприятия вкусовых ощущений связан с химическими реакциями. Предполагают, что каждый рецептор содержит высокочувствительные белковые вещества, распадающиеся при воздействии определённых вкусовых веществ.

    Осязание - сложное ощущение, возникающее при раздражении рецепторов кожи, наружных частей слизистых оболочек и мышечно-суставного аппарата.

    Кожный анализатор воспринимает внешние механические, температурные, химические и другие раздражители кожи.

    Одна из основных функций кожи - защитная. Растяжения, ушибы, давления обезвреживаются упругой жировой подстилкой и эластичностью кожи. Роговой слой предохраняет глубокие слои кожи от высыхания и весьма устойчив к различным химическим веществам. Пигмент меланин предохраняет кожу от воздействия ультрафиолетовых лучей. Неповреждённый слой кожи непроницаем для инфекций, а кожное сало и пот создают гибельную кислую среду для микробов.

    Важная защитная функция кожи - участие в терморегуляции, т.к. 80% всей теплоотдачи организма осуществляется кожей. При высокой температуре окружающей среды кожные сосуды расширяются и теплоотдача конвекцией усиливается. При низкой температуре сосуды суживаются, кожа бледнеет, теплоотдача уменьшается. Отдача тепла через кожу идёт также и потоотделением.

    Секреторная функция осуществляется через сальные и потовые железы. С кожным салом и потом выделяются йод, бром, токсические вещества.

    Обменная функция кожи - участие в регуляции общего обмена веществ в организме (водного, минерального).

    Рецепторная функция кожи - восприятие извне и передача сигналов в ЦНС.

    Виды кожной чувствительности: тактильная, болевая, температурная.

    С помощью анализаторов человек получает информацию о внешнем мире, которая определяет работу функциональных систем организма и поведение человека.

    Максимальные скорости передачи информации, принимаемой человеком с помощью различных органов чувств, приведены в таб. 1.6.1

    Таблица 1. Характеристики органов чувств


    Реакция организма человека на воздействие внешней среды зависит от уровня воздействующего раздражителя. Если этот уровень мал, то человек просто воспринимает информацию извне. При высоких уровнях появляются нежелательные биологические эффекты. Поэтому устанавливают на производстве нормируемые безопасные значения факторов в виде предельно-допустимых концентраций (ПДК) или предельно-допустимых уровней энергетического воздействия (ПДУ).

    ПДУ - это тот максимальный уровень фактора, который, воздействуя на человека (изолированно или в сочетании с другими факторами) в течение рабочей смены, ежедневно, на протяжении всего трудового стажа, не вызовет у него и его потомства биологических изменений, даже скрытых и временно компенсированных, а также психологических нарушений (снижение интеллектуальных и эмоциональных способностей, умственной работоспособности, надёжности).

    Выводы по теме

    Нормируемые безопасные значения факторов в виде ПДК и ПДУ необходимы для исключения необратимых биологических эффектов в организме человека.

    Передняя часть перепончатого лабиринта - улитковый проток, ductus cochlearis, заключенный в костной улитке, является самой существенной частью органа слуха. Ductus cochlearis начинается слепым концом в recessus cochlearis преддверия несколько кзади от ductus reuniens, соединяющего улитковый проток с sacculus. Затем ductus cochlearis проходит по всему спиральному каналу костной улитки и оканчивается слепов ее верхушке. На поперечном сечении улитковый проток имеет треугольное очертание. Одна из трех его стенок срастается с наружной стенкой костного канала улитки, другая, membrana spiralis, является продолжением костной спиральной пластинки, протягиваясь между свободным краем последней и наружной стенкой. Третья, очень тонкая стенка улиточного хода, paries vestibularis ductus cochlearis, протянута косо от спиральной пластинки к наружной стенке.

    Membrana spiralis на заложенной в ней базилярной пластинке, lamina basilaris, несет аппарат, воспринимающий звуки, - спиральный орган. При посредстве ductus cochlearis scala vestibuli и scala tympani отделяются друг от друга, за исключением места в куполе улитки, где между ними имеется сообщение, называемое отверстием улитки, helicotrema. Scala vestibuli сообщается с перилимфатическим пространством преддверия, a scala tympani оканчивается слепо у окна улитки.

    Спиральный орган, organon spirale, располагается вдоль всего улиткового протока на базилярной пластинке, занимая часть ее, ближайшую к lamina spiralis ossea. Базилярная пластинка, lamina basilaris, состоит из большого количества (24000) фиброзных волокон различной длины, натянутых, как струны (слуховые струны). Согласно известной теории Гельмгольца (1875), они являются резонаторами, обусловливающими своими колебаниями восприятие тонов различной высоты, но, по данным электронной микроскопии, эти волокна образуют эластическую сеть, которая в целом резонирует строго градуированными колебаниями. Сам спиральный орган слагается из нескольких рядов эпителиальных клеток, среди которых можно различить чувствительные слуховые клетки с волосками. Он выполняет роль «обратного» микрофона, трансформирующего механические колебания в электрические.

    Артерии внутреннего уха происходит из a. labyrinthi, ветви a. basilaris. Идя вместе с n. vestibulocochlearis во внутреннем слуховом проходе, a. labyrinthi разветвляется в ушном лабиринте. Вены выносят кровь из лабиринта главным образом двумя путями: v. aqueductus vestibuli, лежащая в одноименном канале вместе с ductus endolymphaticus, собирает кровь из utriculus и полукружных каналов и вливается в sinus petrosus superior, v. canaliculi cochleae, проходящая вместе с ductus perilymphaticus в канале водопровода улитки, несет кровь преимущественно от улитки, а также из преддверия от sacculus и utriculus и впадает в v. jugularis interna.

    Пути проведения звука.

    С функциональной точки зрения орган слуха (периферическая часть слухового анализатора) делится на две части:

    1) звукопроводящий аппарат - наружное и среднее ухо, а также некоторые элементы (перилимфа и эндолимфа) внутреннего уха;2) звуковоспринимающий аппарат - внутреннее ухо.

    Воздушные волны, собираемые ушной раковиной, направляются в наружный слуховой проход, ударяются о барабанную перепонку и вызывают ее вибрацию. Вибрация барабанной перепонки, степень натяжения которой регулируется сокращением m. tensor tympani (иннервация из n. trigeminus), приводит в движение сращенную с ней рукоятку молоточка. Молоточек соответственно движет наковальню, а наковальня - стремя, которое вставлено в fenestra vestibuli, ведущее во внутреннее ухо. Величина смещения стремени в окне преддверия регулируется сокращением m. stapedius (иннервация от n. stapedius из n. facialis). Таким образом цепь косточек, соединенная подвижно, передает колебательные движения барабанной перепонки направленно к окну преддверия.

    Движение стремени в окне преддверия кнутри вызывает перемещения лабиринтной жидкости, которая выпячивает мембрану окна улитки кнаружи. Эти перемещения необходимы для функционирования высокочувствительных элементов спирального органа. Первой перемещается перилимфа преддверия; ее колебания по scala vestibuli восходят до вершины улитки, через helicotrema передаются перилимфе в scala tympani, по ней спускаются к membrana tympani secundaria, закрывающей окно улитки, являющейся слабым местом в костной стенке внутреннего уха, и как бы возвращаются к барабанной полости. С перилимфы звуковая вибрация передается эндолимфе, а через нее спиральному органу. Таким образом, колебания воздуха в наружном и среднем ухе благодаря системе слуховых косточек барабанной полости переходят в колебания жидкости перепончатого лабиринта, вызывающие раздражения специальных слуховых волосковых клеток спирального органа, составляющих рецептор слухового анализатора.

    В рецепторе, являющемся как бы «обратным» микрофоном, механические колебания жидкости (эндолимфы) превращаются в электрические, характеризующие нервный процесс, распространяющийся по кондуктору до мозговой коры. Кондуктор слухового анализатора составляют слуховые проводящие пути, состоящие из ряда звеньев.

    Клеточное тело первого нейрона лежит в ganglion spirale. Периферический отросток биполярных клеток его в спиральном органе начинается рецепторами, а центральный идет в составе pars cochlearis n. vestibulocochlearis до его ядер, nucleus cochlearis dorsalis et ventralis, заложенных в области ромбовидной ямки. Различные части слухового нерва проводят различные по частоте колебаний звуки.

    В названных ядрах помещаются тела вторых нейронов, аксоны которых образуют центральный слуховой путь; последний в области заднего ядра трапециевидного тела перекрещивается с соименным путем противоположной стороны, образуя латеральную петлю, lemniscus lateralis. Волокна центрального слухового пути, идущие из вентрального ядра, образуют трапециевидное тело и, пройдя мост, входят в состав lemniscus lateralis противоположной стороны. Волокна центрального пути, гисходящие из дорсального ядра, идут по дну IV желудочка в виде striae medullares ventriculi quarti, проникают в formatio reticularis моста и вместе с волокнами трапециевидного тела вступают в состав латеральной петли противоположной стороны. Lemniscus lateralis заканчивается частью в нижних холмиках крыши среднего мозга, частью в corpus geniculatum mediale, где помещаются третьи нейроны.

    Нижние холмики крыши среднего мозга служат рефлекторным центром для слуховых импульсов. От них идет к спинному мозгу tractus tectospinalis, через посредство которого совершаются двигательные реакции на слуховые раздражения, поступающие в средний мозг. Рефлекторные ответы на слуховые импульсы могут быть получены и из других промежуточных слуховых ядер - ядер трапециевидного тела и латеральной петли, связанных короткими путями с двигательными ядрами среднего мозга, моста и продолговатого мозга.

    Оканчиваясь в образованиях, имеющих отношение к слуху (нижние холмики и corpus geniculatum mediale), слуховые волокна и их коллатерали присоединяются, помимо этого, к медиальному продольному пучку, при помощи которого они приходят в связь с ядрами глазодвигательных мышц и с двигательными ядрами других черепных нервов и спинного мозга. Этими связями объясняются рефлекторные ответы на слуховые раздражения.

    Нижние холмики крыши среднего мозга не имеют центростремительных связей с корой. В corpus geniculatum mediale лежат клеточные тела последних нейронов, аксоны которых в составе внутренней капсулы достигают коры височной доли большого мозга. Корковый конец слухового анализатора находится в gyrus temporalis superior (поле 41). Здесь воздушные волны наружного уха, вызывающие движение слуховых косточек в среднем ухе и колебания жидкости во внутреннем ухе и превращающиеся далее в рецепторе в нервные импульсы, переданные по кондуктору в мозговую кору, воспринимаются в виде звуковых ощущений. Следовательно, благодаря слуховому анализатору колебания воздуха, т. е. объективное явление существующего независимо от нашего сознания окружающего нас реального мира, отражается в нашем сознании в виде субъективно воспринимаемых образов, т. е. звуковых ощущений.

    Это яркий пример справедливости ленинской теории отражения, согласно которой объективно реальный мир отражается в нашем сознании в форме субъективных образов. Эта материалистическая теория разоблачает субъективный идеализм, который, наоборот, на первое место ставит наши ощущения.

    Благодаря слуховому анализатору различные звуковые раздражители, воспринимаемые в нашем мозге в виде звуковых ощущений и комплексов ощущений - восприятий, становятся сигналами (первыми сигналами) жизненно важных явлений окружающей среды. Это составляет первую сигнальную систему действительности (И. П. Павлов), т. е. конкретно-наглядное мышление, свойственное и животным. У человека имеется способность к абстрактному, отвлеченному мышлению при помощи слова, которое сигнализирует о звуковых ощущениях, являющихся первыми сигналами, и потому является сигналом сигналов (вторым сигналом). Отсюда устная речь составляет вторую сигнальную систему действительности, свойственную только человеку.