Войти
Образование в России
  • История главного открытия XX века
  • Выбор есть Минский высший радиотехнический колледж проходной балл
  • Ребусы по русскому языку Придумать ребусы по русскому языку
  • Анализ «Премудрый пескарь» Салтыков-Щедрин Описание сказки салтыкова щедрина премудрый пескарь
  • Роль эмоций и чувств в работе педагога методическая разработка на тему
  • В чем заключается смысл 3 закона менделя
  • Что значит пи си. Вычисление значения числа "пи"

    Что значит пи си. Вычисление значения числа

    Уже много веков и даже, как ни странно, тысячелетий люди понимают важность и ценность для науки математической постоянной, равной отношению длины окружности к ее же диаметру. число Пи, до сих пор неизвестно, но к нему имели отношение самые лучшие математики на протяжении всей нашей истории. Большинство из них хотели выразить его рациональным числом.

    1. Исследователи и истинные поклонники числа Пи организовали клуб, для вступления в который требуется знать наизусть достаточно большое количество его знаков.

    2. С 1988 года празднуется «День числа Пи», который приходится на 14 марта. Готовят салаты, торты, печенья, пирожные с его изображением.

    3. Число Пи уже переложили на музыку, при этом оно весьма неплохо звучит. Ему даже воздвигли памятник в американском Сиэтле перед зданием городского Музея искусств.

    В то далекое время число Пи старались вычислить при помощи геометрии. То, что это число постоянно для самых разных окружностей, знали еще геометры в Древнем Египте, Вавилоне, Индии и Древней Греции, утверждавшие в своих работах, что оно всего лишь немного больше трех.

    В одной из священных книг джайнизма (древняя индийская религия, которая возникла в VI в. до н. э.) упоминается, что тогда число Пи считалось равным корню квадратному из десяти, что в итоге дает 3,162... .

    Древнегреческие математики проводили измерение окружности методом построения отрезка, а вот для того, чтобы измерить круг, им приходилось строить равновеликий квадрат, то есть фигуру, равную ему по площади.

    Когда еще не знали десятичных дробей, великий Архимед нашел значение числа Пи с точностью 99,9%. Он открыл способ, который стал основой многих последующих вычислений, вписывал в окружность и описывал вокруг нее правильные многоугольники. В результате Архимед рассчитал значение числа Пи как отношение 22 / 7 ≈ 3,142857142857143.

    В Китае, математик и придворный астроном, Цзу Чунчжи в V веке до н. э. обозначил более точное значение числа Пи, рассчитав его до семи цифр после запятой и определил его значение между числами 3, 1415926 и 3,1415927. Более 900 лет понадобилось ученым, чтобы продолжить дальше этот цифровой ряд.

    Средние века

    Известный индийский ученый Мадхава, который жил на рубеже XIV - XV веков, ставший основателем Керальской школы астрономии и математики, впервые в истории стал работать над разложением тригонометрических функций в ряды. Правда, сохранились всего лишь два его труда, а на другие известны лишь ссылки и цитаты его учеников. В научном трактате «Махаджьянаяна», который приписывают Мадхаве, указано, что число Пи равно 3,14159265359. А в трактате «Садратнамала» приведено число с еще большим количеством точных знаков после запятой: 3,14159265358979324. В указанных числах последние цифры не соответствуют правильному значению.

    В XV веке самаркандский математик и астроном Ал-Каши вычислил число Пи с шестнадцатью знаками после запятой. Его результат считался наиболее точным в течение последующих 250 лет.

    У. Джонсон, математик из Англии, одним из первых смог обозначить отношение длины окружности к ее диаметру буквой π. Пи - это первая буква греческого слова «περιφέρεια» - окружность. Но этому обозначению удалось стать общепринятым лишь после того, как им воспользовался в 1736 году более известный ученый Л. Эйлер.

    Заключение

    Современные ученые продолжают работать над дальнейшими вычислениями значений числа Пи. Для этого уже используют суперкомпьютеры. В 2011 г. ученый из Сигэру Кондо, сотрудничая с американским студентом Александром Йи, произвели правильный расчет последовательности из 10 триллионов цифр. Но до сих пор так и неясно, кто открыл число Пи, кто впервые задумался над этой проблемой и произвел первые расчеты этого, по-настоящему мистического числа.

    Отношение длины окружности к ее диаметру одно и то же для всех окружностей. Это отношение принято обозначать греческой буквой (“пи” - начальная буква греческого слова , которое и означало “окружность”).

    Архимед в сочинении “Измерение круга” вычислил отношение длины окружности к диаметру (число ) и нашел, что оно заключено между 3 10/71 и 3 1/7.

    Долгое время в качестве приближенного значения использовали число 22/7, хотя уже в V веке в Китае было найдено приближение 355/113 = 3,1415929..., которое было открыто вновь в Европе лишь в XVI веке.

    В Древней Индии считали равным = 3,1622….

    Французский математик Ф. Виет вычислил в 1579 г. с 9 знаками.

    Голландский математик Лудольф Ван Цейлен в 1596 г. публикует результат своего десятилетнего труда – число , вычисленное с 32 знаками.

    Но все эти уточнения значения числа производились методами, указанными еще Архимедом: окружность заменялась многоугольником со все большим числом сторон. Периметр вписанного многоугольника при этом был меньше длины окружности, а периметр описанного многоугольника – больше. Но при этом оставалась неясным, является ли число рациональным, т. е. отношением двух целых чисел, или иррациональным.

    Лишь в 1767 г. немецкий математик И.Г. Ламберт доказал, что число иррационально.

    А еще через сто с лишним лет в 1882 г. другой немецкий математик – Ф. Линдеман доказал его трансцендентность, что означало и невозможность построения при помощи циркуля и линейки квадрата, равновеликого данному кругу.

    Простейшее измерение

    Начертим на плотном картоне окружность диаметра d (=15 см) , вырежем получившийся круг и обмотаем вокруг него тонкую нить. Измерив длину l (=46,5 см) одного полного оборота нити, разделим l на длину диаметра d окружности. Получившееся частное будет приближенным значением числа , т. е. = l / d = 46,5 см / 15 см = 3,1 . Данный довольно грубый способ дает в обычных условиях приближенное значение числа с точностью до 1.

    Измерение с помощью взвешивания

    На листе картона начертим квадрат. Впишем в него круг. Вырежем квадрат. Определим массу картонного квадрата с помощью школьных весов. Вырежем из квадрата круг. Взвесим и его. Зная массы квадрата m кв (=10 г) и вписанного в него круга m кр (=7,8 г) воспользуемся формулами

    где p и h –соответственно плотность и толщина картона, S – площадь фигуры. Рассмотрим равенства:

    Естественно, что в данном случае приближенное значение зависит от точности взвешивания. Если взвешиваемые картонные фигуры будут довольно большими, то возможно даже на обычных весах получить такие значения масс, которые обеспечат приближение числа с точностью до 0,1.

    Суммирование площадей прямоугольников, вписанных в полукруг

    Рисунок 1

    Пусть А (a; 0), В (b; 0). Опишем на АВ полуокружность как на диаметре. Разделим отрезок АВ на n равных частей точками x 1 , x 2 , ..., x n-1 и восстановим из них перпендикуляры до пересечения с полуокружностью. Длина каждого такого перпендикуляра – это значение функции f(x)= . Из рисунка 1 ясно, что площадь S полукруга можно вычислить по формуле

    S = (b – a) ((f(x 0) + f(x 1) + … + f(x n-1)) / n.

    В нашем случае b=1, a=-1 . Тогда = 2 S .

    Значения будут тем точнее, чем больше точек деления будет на отрезке АВ. Облегчить однообразную вычислительную работу поможет компьютер, для которого ниже приводится программа 1, составленная на Бейсике.

    Программа 1

    REM "Вычисление пи"
    REM "Метод прямоугольников"
    INPUT "Введите число прямоугольников", n
    dx = 1 / n
    FOR i = 0 TO n - 1
    f = SQR(1 - x ^ 2)
    x = x + dx
    a = a + f
    NEXT i
    p = 4 * dx * a
    PRINT "Значение пи равно ", p
    END

    Программа была набрана и запущена при различных значениях параметра n . Полученные значения числа записаны в таблице:

    Метод Монте-Карло

    Это фактически метод статистических испытаний. Свое экзотическое название он получил от города Монте-Карло в княжестве Монако, знаменитого своими игорными домами. Дело в том, что метод требует применения случайных чисел, а одним из простейших приборов, генерирующих случайные числа, может служить рулетка. Впрочем, можно получить случайные числа и при помощи …дождя.

    Для опыта приготовим кусок картона, нарисуем на нем квадрат и впишем в квадрат четверть круга. Если такой чертеж некоторое время подержать под дождем, то на его поверхности останутся следы капель. Подсчитаем число следов внутри квадрата и внутри четверти круга. Очевидно, что их отношение будет приближенно равно отношению площадей этих фигур, так как попадание капель в различные места чертежа равновероятно. Пусть N кр – число капель в круге, N кв – число капель в квадрате, тогда

    4 N кр / N кв.

    Рисунок 2

    Дождь можно заменить таблицей случайных чисел, которая составляется с помощью компьютера по специальной программе. Каждому следу капли поставим в соответствие два случайных числа, характеризующих его положение вдоль осей Ох и Оу . Случайные числа можно выбрать из таблицы в любом порядке, например, подряд. Пусть первое четырехзначное число в таблице 3265 . Из него можно приготовить пару чисел, каждое из которых больше нуля и меньше единицы: х=0,32, у=0,65 . Эти числа будем считать координатами капли, т. е. капля как будто попала в точку (0,32; 0,65). Аналогично поступаем и со всеми выбранными случайными числами. Если окажется, что для точки (х; у) выполняется неравенство, то, значит, она лежит вне круга. Если х + у = 1 , то точка лежит внутри круга.

    Для подсчета значения снова воспользуемся формулой (1). Ошибка вычислений по этому методу, как правило, пропорциональна , где D – некоторая постоянная, а N –число испытаний. В нашем случае N = N кв. Из этой формулы видно: для того чтобы уменьшить ошибку в 10 раз (иначе говоря, чтобы получить в ответе еще один верный десятичный знак), нужно увеличить N, т. е. объем работы, в 100 раз. Ясно, что применение метода Монте-Карло стало возможным только благодаря компьютерам. Программа 2 реализует на компьютере описанный метод.

    Программа 2

    REM "Вычисление пи"
    REM "Метод Монте-Карло "
    INPUT "Введите число капель ", n
    m = 0
    FOR i = 1 TO n
    t = INT(RND(1) * 10000)
    x = INT(t \ 100)
    y = t - x * 100
    IF x ^ 2 + y ^ 2 < 10000 THEN m = m + 1
    NEXT i
    p = 4 * m / n

    END

    Программа была набрана и запущена при различных значениях параметра n. Полученные значения числа записаны в таблице:

    n
    n

    Метод “падающей иголки”

    Возьмем обыкновенную швейную иголку и лист бумаги. На листе проведем несколько параллельных прямых так, чтобы расстояния между ними были равны и превышали длину иголки. Чертеж должен быть достаточно большим, чтобы случайно брошенная игла не упала за его пределами. Введем обозначения: а - расстояние между прямыми, l – длина иглы.

    Рисунок 3

    Положение случайным образом брошенной на чертеж иглы (см. рис. 3) определяется расстоянием Х от ее середины до ближайшей прямой и углом j , которой игла образует с перпендикуляром, опущенным из середины иглы на ближайшую прямую (см. рис. 4). Ясно, что

    Рисунок 4

    На рис. 5 изобразим графически функцию y=0,5 cos . Всевозможные расположения иглы характеризуются точками с координатами (; у ) , расположенными на участке ABCD. Закрашенный участок AED – это точки, которые соответствуют случаю пересечения иглы с прямой. Вероятность события a – “игла пересекла прямую” – вычисляется по формуле:

    Рисунок 5

    Вероятность p(a) можно приблизительно определить многократным бросанием иглы. Пусть иглу бросали на чертеж c раз и p раз она упала, пересекая одну из прямых, тогда при достаточно большом c имеем p(a) = p / c . Отсюда = 2 l с / a k.

    Замечание. Изложенный метод представляет собой вариацию метода статистических испытаний. Он интересен с дидактической точки зрения, так как помогает совместить простой опыт с составлением довольно сложной математической модели.

    Вычисление с помощью ряда Тейлора

    Обратимся к рассмотрению произвольной функции f(х). Предположим, что для нее в точке x 0 существуют производные всех порядков до n -го включительно. Тогда для функции f(х) можно записать ряд Тейлора:

    Вычисления с помощью этого ряда будут тем точнее, чем больше членов ряда будет задействовано. Реализовать данный способ, конечно, лучше всего на компьютере, для чего можно воспользоваться программой 3.

    Программа 3

    REM "Вычисление пи"
    REM "Разложение в ряд Тейлора "
    INPUT n
    a = 1
    FOR i = 1 TO n
    d = 1 / (i + 2)
    f = (-1) ^ i * d
    a = a + f
    NEXT i
    p = 4 * a
    PRINT "значение пи равно"; p
    END

    Программа была набрана и запущена при различных значениях параметра n . Полученные значения числа записаны в таблице:

    Есть очень простые мнемонические правила для запоминания значения числа :


    Что такое "пи" известно абсолютно всем. Но знакомое всем со школы число возникает во многих ситуациях, не имеющим никакого отношения к окружностям. Его можно встретить в теории вероятностей, в формуле Стирлинга для вычисления факториала, в решении задач с комплексными числами и прочих неожиданных и далеких от геометрии областях математики. Английский математик Август де Морган назвал как-то "пи" “…загадочным числом 3,14159…, которое лезет в дверь, в окно и через крышу”.

    Это таинственное число, связанное с одной из трех классических задач Античности - построение квадрата, площадь которого равна площади заданного круга - влечет за собой шлейф драматических исторических и курьезных занимательных фактов.


    • Несколько занимательных фактов о числе Пи

    • 1. А знаете ли Вы, что первым, кто использовал для числа 3,14 символ «пи», был Вильям Джонс из Уэльса, и произошло это в 1706 году.

    • 2. А знаете ли Вы, что мировой рекорд по запоминанию числа Пи установил 17 июня 2009 года украинский нейрохирург, доктор медицинских наук, профессор Андрей Слюсарчук, удержавший в памяти 30 млн. его знаков (20 томов текста).

    • 3. А знаете ли Вы, что в 1996 году Майк Кейт написал короткий рассказ, который называется «Ритмическая каденция» («Cadeic Cadenze»), в его тексте длина слов соответствовала первым 3834 цифрам числа Пи.

    Символ Пи впервые употребил в 1706 году Уильям Джонс, однако настоящую популярность он приобрел после того, как его начал использовать в своих работах математик Леонард Эйлер в 1737 году.

    Считается, что праздник придумал в 1987 году физик из Сан-Франциско Ларри Шоу, обративший внимание на то, что 14 марта (в американском написании - 3.14) ровно в 01:59 дата и время совпадут с первыми разрядами числа Пи = 3,14159.

    14 марта 1879 года также родился создатель теории относительности Альберт Эйнштейн, что делает этот день еще более привлекательным для всех любителей математики.

    Кроме того, математики отмечают и день приближенного значения Пи, который приходится на 22 июля (22/7 в европейском формате записи даты).

    "В это время читают хвалебные речи в честь числа Пи и его роли в жизни человечества, рисуют антиутопические картины мира без Пи, едят пироги с изображением греческой буквы Пи или с первыми цифрами самого числа, решают математические головоломки и загадки, а также водят хороводы", - пишет Википедия.

    В цифровом выражении Пи начинается как 3,141592 и имеет бесконечную математическую продолжительность.

    Французский ученый Фабрис Беллар вычислил число Пи с рекордной точностью. Об этом сообщается на его официальном сайте. Свежий рекорд составляет около 2,7 триллиона (2 триллиона 699 миллиардов 999 миллионов 990 тысяч) десятичных знаков. Предыдущее достижение принадлежит японцам, которые посчитали константу с точностью до 2,6 триллиона десятичных знаков.

    На вычисления у Беллара ушло около 103 дней. Все расчеты проводились на домашнем компьютере, стоимость которого лежит в пределах 2000 евро. Для сравнения, предыдущий рекорд был установлен на суперкомпьютере T2K Tsukuba System, у которого ушло на работу около 73 часов.

    Изначально число Пи появилось как отношение длины окружности к ее диаметру, поэтому его приближенное значение вычислялось как отношение периметра вписанного в окружность многоугольника к диаметру этой окружности. Позже появились более совершенные методы. В настоящее время Пи вычисляется при помощи быстро сходящихся рядов, наподобие тех, которые были предложены Сринивасом Рамануджаном в начале 20 века.

    Сначала Пи рассчитывалось в двоичной системе, после чего переводилось в десятичную. Это проделали за 13 дней. В общей сложности для хранения всех цифр требуется 1,1 терабайта дискового пространства.

    Подобные вычисления имеют не только прикладное значение. Так, сейчас с Пи связано множество нерешенных задач. Не решен вопрос о нормальности этого числа. Например, известно, что Пи и e (основание экспоненты) трансцендентные числа, то есть не являются корнями никакого многочлена с целыми коэффициентами. При этом, однако, является ли сумма этих двух фундаментальных констант трансцендентным числом или нет - неизвестно до сих пор.

    Более того, до сих пор не известно, все ли цифры от 0 до 9 встречаются в десятичной записи числа Пи бесконечное число раз.

    В данном случае сверхточное вычисление числа является удобным экспериментом, результаты которого позволяют сформулировать гипотезы относительно тех или иных особенностей числа.

    Число вычисляется по определенным правилам, причем при любом вычислении, в любом месте и в любое время, на определенном месте в записи числа стоит одна и та же цифра. Значит существует некий закон, по которому в числе в определенном месте ставится определенная цифра. Конечно, это закон не простой, но закон всё таки есть. И, значит, цифры в записи числа не случайны, а закономерны.

    Считают число Пи: PI = 4 — 4/3 + 4/5 — 4/7 + 4/9 — … — 4/n + 4/(n+2)

    Поиск Pi или деление столбиком:

    Пары целых чисел, дающих при делении большое приближение к числу Pi. Деление производилось "столбиком", чтобы обойти ограничения по длине чисел с плавающей точкой Visual Basic 6.

    Pi = 3.14159265358979323846264>33832795028841 971...

    К экзотическим методам вычисления пи вроде использования теории вероятности или простых чисел принадлежит и метод, придуманный Г.А. Гальпериным, и называемый Пи-биллиардом, который основан на оригинальной модели. При столкновении двух шаров, меньший из которых находится между большим и стенкой, и больший движется к стенке, число соударений шаров позволяет вычислить Пи со сколь угодно большой наперед заданной точностью. Надо только запустить процесс (можно и на компьютере) и посчитать число ударов шаров. Программная реализация этой модели пока не известна

    В каждой книге по занимательной математике вы непременно найдете историю вычисления и уточнения значения числа "пи". Сначала, в древних Китае, Египте, Вавилоне и Греции для расчетов использовали дроби, например, 22/7 или 49/16. В Средние века и Эпоху Возрождения европейские, индийские и арабские математики уточнили значение "пи" до 40 знаков после десятичной точки, а к началу Эпохи Компьютеров усилиями многих энтузиастов количество знаков было доведено до 500. Такая точность имеет чисто научный интерес (об этом ниже), для практики, в пределах Земли достаточно 11 знаков после точки.

    Тогда, зная, что радиус Земли равен 6400 км или 6,4*1012 миллиметров, получится, что мы, отбросив двенадцатую цифру "пи" после точки при вычислении длины меридиана, ошибемся на несколько миллиметров. А при расчете длины Земной орбиты при вращении вокруг Солнца (как известно, R=150*106 км = 1,5*1014 мм) для такой же точности достаточно использовать "пи" с четырнадцатью знаками после точки. Среднее расстояние от Солнца до Плутона - самой далекой планеты Солнечной системы - в 40 раз больше среднего расстояния от Земли до Солнца.

    Для вычисления длины орбиты Плутона с ошибкой в несколько миллиметров достаточно шестнадцати знаков "пи". Да что уж там мелочиться - диаметр нашей Галактики около 100.000 световых лет (1 световой год примерно равен 1013 км) или 1018 км или 1030 мм., а еще в XXVII веке были получены 34 знака "пи", избыточные для таких расстояний.

    В чем же сложность вычисления значения "пи"? Дело в том, что оно не только иррациональное (то есть его нельзя выразить в видедроби P/Q, где P и Q целые числа), но оно еще не может быть корнем алгебраического уравнения. Число, например, иррациональное, не может быть представлено отношением целых чисел, но оно является корнем уравнения Х2-2=0, а для чисел "пи" и е (постоянная Эйлера), нельзя указать такое алгебраическое (не дифференциальное) уравнение. Такие числа (трансцендентные) вычисляются рассмотрением какого-либо процесса и уточняются за счет увеличения шагов рассматриваемого процесса. Самый “простой” путь - вписывать в окружность правильный многоугольник и вычислять отношение периметра многоугольника к его “радиусу”...pages marsu

    Число объясняет мир

    Кажется, двум американским математикам удалось приблизиться к разгадке тайны числа пи, представляющего в сугубо математическом плане соотношение длины окружности круга к его диаметру, сообщает Der Spiegel.

    Как иррациональная величина оно не может быть представлено в виде завершенной дроби, поэтому после запятой следует бесконечный ряд цифр. Это свойство всегда привлекало математиков, стремившихся найти, с одной стороны, более точное значение пи, а с другой — его обобщенную формулу.

    Однако математики Дэвид Бейли из лаборатории Lawrence Berkeley National Laboratory в Калифорнии и Ричард Грендел из колледжа Reed College в Портланде, рассматривали число с другой стороны — они попытались найти какой-то смысл в кажущемся хаотичном ряду цифр после запятой. В результате установили, что регулярно повторяются комбинации следующих цифр — 59345 и 78952.

    Но пока что не могут ответить на вопрос, является ли повторение случайным или закономерным. Вопрос закономерности повторения определенных комбинаций цифр, и не только в числе пи,— один из самых трудных в математике. Но теперь можно сказать что-то более определенное об этом числе. Открытие прокладывает путь к разгадке числа пи и в целом к определению его сути — является ли оно нормальным для нашего мира или нет.

    Оба математика интересуются числом пи с 1996 года, и с этого времени им пришлось отказаться от так называемой «теории чисел» и обратить внимание на «теорию хаоса», являющуюся ныне их главным оружием. Исследователи конструируют на основе отображения числа пи — самой распространенной его формой является при этом 3,14159... — ряды чисел между нулем и единицей — 0,314, 0,141, 0,415, 0,159 и так далее. Поэтому, если число пи действительно является хаотичным, то хаотичным должны быть и ряды чисел, начинающихся с нуля. Но ответа на этот вопрос пока нет. Разгадать секрет пи, как и его старшего брата — числа 42, с помощью которого многие исследователи пытаются объяснить тайну мироздания, еще предстоит."

    Интересные данные о распределении цифр Пи.

    (Программирование — величайшее из достижений человечества. Благодаря ему мы регулярно узнаем то, что нам знать совсем не нужно, но уж очень интересно)

    Посчитано (для миллиона цифр после запятой):

    нулей = 99959,

    единиц = 99758,

    двоек = 100026,

    троек = 100229,

    четвёрок = 100230,

    пятёрок = 100359,

    шестёрок = 99548,

    семёрок = 99800,

    восьмёрок = 99985,

    девяток = 100106.

    В первых 200,000,000,000 десятичных знаках Пи цифры встречались с такой частотой:

    "0" : 20000030841;

    "1" : 19999914711;

    "2" : 20000136978;

    "3" : 20000069393

    "4" : 19999921691;

    "5" : 19999917053;

    "6" : 19999881515;

    "7" : 19999967594

    "8" : 20000291044;

    "9" : 19999869180;

    То есть цифры распределены почти равномерно. Почему?Потому что по современным математическим представлениям при бесконечном количестве цифр их будет точно поровну, кроме того единичек будет столько же, сколько двоек и троек вместе взятых и даже столько же, сколько и всех остальных девяти цифр вместе взятых. Но тут знать, где остановиться, ловить момент, так сказать, где их действительно поровну.

    И еще - в цифрах числа Пи можно ожидать появление любой наперед заданной последовательности цифр. Например, самыераспространенные расстановки встретились в следующих по счету цифрах:

    01234567891: с 26,852,899,245

    01234567891: с 41,952,536,161

    01234567891: с 99,972,955,571

    01234567891: с 102,081,851,717

    01234567891: с 171,257,652,369

    01234567890: с 53,217,681,704

    27182818284: с 45,111,908,393 - это цифры числа е. (

    Была такая шутка: ученые нашли последнее число в записи Пи - им оказалось число е, почти попали)

    Можно поискать в первых десяти тысячах знаков Пи свой телефон или дату рождения, если не получится, то ищите в 100.000 знаков.

    В числе 1/Пи начиная с 55,172,085,586 знака идут 3333333333333, не правда ли удивительно?

    В философии обычно противопоставляют случайное и необходимое. Так знаки числа пи случайны? Или они необходимы? Скажем, третий знак числа пи равен "4". И вне зависимости от того, кто-бы это пи вычислял, в каком месте и в какое время он бы это не делал, третий знак с необходимостью всегда будет равен "4".

    Связь числа Пи, числом Фи и рядом Фибоначии . Связь числа 3,1415916 и числа 1,61803 и последовательности Пизанского.


    • Еще интересное:

    • 1. В десятичных позициях числа Пи 7, 22, 113, 355 — цифра 2. Дроби 22/7 и 355/113 - хорошие приближения к числу Пи.

    • 2. Коханский нашел, что Пи является приблизительным корнем уравнения: 9х^4-240х^2+1492=0

    • 3. Если записать заглавные буквы английского алфавита по часовой стрелке в круг и вычеркнуть буквы имеющие симметрию слева - направо: A,H,I,M,O,T,U,V,W,X,Y, то оставшиеся буквы образуют группы по 3,1,4,1,6 букв.

    • (A) BCDEFG (HI) JKL (M) N (O) PQRS (TUVWXY) Z

    • 6 3 1 4 1

    • Так что английский алфавит должен начинаться с буквы Н, I или J, а не с буквы А:)

    Поскольку в последовательности знаков числа пи нет повторений - это значит, что последовательность знаков пи подчиняется теории хаоса, точнее, число пи - это и есть хаос, записанный цифрами. Более того, при желании, можно этот хаос представить графически, и есть предположение, что этот Хаос разумен. В 1965-м году американский математик М. Улэм, сидя на одном скучном собрании, от нечего делать начал писать на клетчатой бумаге цифры, входящие в число пи. Поставив в центре 3 и двигаясь по спирали против часовой стрелки, он выписывал 1, 4, 1, 5, 9, 2, 6, 5 и прочие цифры после запятой. Попутно он обводил все простые числа кружками. Каково же было его удивление и ужас, когда кружки стали выстраиваться вдоль прямых! Позже он сгенерировал на основе этого рисунка цветовую картину с помощью специального алгоритма. Что изображено на этой картине - засекречено.

    А нам-то что с того? А следует из этого то, что в десятичном хвосте числа пи можно отыскать любую задуманную последовательность цифр. Ваш телефон? Пожалуйста, и не раз (проверить можно тут, но имейте в виду, что эта страничка весит около 300 мегабайт, так что загрузки придется подождать. Можно скачать жалкий миллион знаков тут или поверить на слово: любая последовательность цифр в десятичных знаках числа пи рано или поздно найдется. Любая!

    Для более возвышенных читателей можно предложить и другой пример: если зашифровать все буквы цифрами, то в десятичном разложении числа пи можно найти всю мировую литературу и науку, и рецепт изготовления соуса бешамель, и все священные книги всех религий. Я не шучу, это строгий научный факт. Ведь последовательность БЕСКОНЕЧНА и сочетания не повторяются, следовательно она содержит ВСЕ сочетания цифр, и это уже доказано. А раз все, то все. В том числе и такие, которые соответствуют выбранной вами книге.

    А это опять-таки означает, что там содержится не только вся мировая литература, которая уже написана (в частности и те книги, которые сгорели и т.д.), но и все книги, которые еще БУДУТ написаны.

    Получается, что это число (единственное разумное число во вселенной!) и управляет нашим миром.

    Вопрос в том, как их там отыскать...

    А еще в этот день родился Альберт Эйнштейн, который предсказал... да чего он только не предсказал! ... даже темную энергию.

    Был этот мир глубокой тьмой окутан.

    Да будет свет! И вот явился Ньютон.

    Но Сатана не долго ждал реванша.

    Пришел Эйнштейн - и стало все, как раньше.

    Они хорошо коррелируются - пи и Альберт...

    Теории возникают, развиваются и...

    Суть: число Пи не равно 3,14159265358979....

    Это заблуждение, основанное на ошибочном постулате отождествления плоского Евклидового пространства с реальным пространством Вселенной.

    Краткое объяснение почему в общем случае Пи не равно 3,14159265358979...

    Этот феномен связан с кривизной пространства. Силовые линии во Вселенной на значительных расстояниях не идеальные прямые, а слегка изогнутые линии. Мы уже доросли до момента констатации факта, что в реальном мире не существует идеально прямых линий, идеально плоских кругов, идеального Евклидового пространства. Следовательно, мы должны представлять себе любой круг одного радиуса на сфере гораздо большего радиуса.

    Мы заблуждаемся, думая что пространство плоско, «кубично». Вселенная не кубична, не цилиндрична и тем более не пирамидальна. Вселенная сферична. Единственный случай, когда плоскость может быть идеальной (в смысле «неизогнутой») является случай, когда такая плоскость проходит через центр Вселенной.

    Конечно, кривизной CD-ROMа можно пренебречь, поскольку диаметр компакт-диска значительно меньше диаметра Земли, тем более диаметра Вселенной. Но пренебрегать кривизной в орбитах комет и астероидов не следует. Неистребимое Птолемеевское убеждение, что мы всё ещё находимся в центре Вселенной может нам дорого стоить.

    Ниже приводятся аксиомы плоского Евклидова («кубичного» Декартова) пространства и сформулированная мной дополнительная аксиома для сферического пространства.

    Аксиомы плоского сознания:

    через 1 точку можно провести бесконечное количество прямых и бесконечное количество плоскостей.

    через 2 точки можно провести 1 и только 1 прямую, через которую можно провести бесконечное количество плоскостей.

    через 3 точки в общем случае нельзя провести ни одной прямой и одну, и только одну, плоскость. Дополнительная аксиома для сферического сознания:

    через 4 точки в общем случае нельзя провести ни одной прямой, ни одной плоскости и одну и только одну сферу.Арсентьев Алексей Иванович

    Немного мистики. Число ПИ Разумно?

    Через число Пи может быть определена любая другая константа, включая постоянную тонкой структуры (альфа), константу золотой пропорции (f=1,618...), не говоря уж о числе e - именно поэтому число пи встречается не только в геометрии, но и в теории относительности, квантовой механике, ядерной физике и т.д. Более того - недавно учёные установили, что именно через Пи можно определить местоположение элементарных частиц в Таблице элементарных частиц (ранее это пытались сделать через Таблицу Вуди), а сообщение о том, что в недавно расшифрованном ДНК человека число Пи отвечает за саму структуру ДНК (достаточно сложную, надо отметить), произвело эффект разорвавшейся бомбы!

    Как считает доктор Чарльз Кэнтор, под руководством которого ДНК и было расшифровано: "Такое впечатление, что мы подошли к разгадке некоей фундаментальной задачки, которую нам подкинуло мироздание. Число Пи - повсюду, оно контролирует все известные нам процессы, оставаясь при этом неизменным! Кто же контролирует само число Пи? Ответа пока нет."

    На самом деле, Кэнтор лукавит, ответ есть, просто он настолько невероятен, что учёные предпочитают не выносить его на широкую публику, опасаясь за собственную жизнь (об этом чуть позже): число Пи само себя контролирует, оно разумно! Вздор? Не спешите. Ведь ещё Фонвизин говорил, что "в человеческом невежестве весьма утешительно считать всё то за вздор, чего не знаешь."

    Во-первых, догадки о разумности чисел вообще давно посещали многих известных математиков современности. Норвежский математик Нильс Хенрик Абель в феврале 1829-го писал своей матери: "Я получил подтверждения того, что одно из чисел - разумно. Я говорил с ним! Но меня пугает, что я не могу определить, что это за число. Но может быть это и к лучшему. Число предупредило меня, что я буду наказан, если Оно будет раскрыто." Кто знает, раскрыл бы Нильс значение числа, с ним говорившего, но 6 марта 1829-го года его не стало.

    1955 год, японец Ютака Танияма выдвигает гипотезу о том, что "каждой эллиптической кривой соответствует определенная модулярная форма" (как известно, на основе этой гипотезы была доказана теорема Ферма). 15 сентября 1955-го, на международном математическом симпозиуме в Токио, где Танияма объявил о своей гипотезе, на вопрос журналиста: "Как вы до этого додумались?" - Танияма отвечает: "Я не додумался, число мне об этом сообщило по телефону". Журналист, думая, что это шутка, решил её "поддержать": "А номер-то телефона оно вам сообщило?". На что Танияма серьёзно ответил: "Такое впечатление, что этот номер мне давно был известен, но я могу теперь сообщить его только через три года, 51 день, 15 часов и 30 минут." В ноябре 1958 года Танияма покончил с собой. Три года, 51 день, 15 часов и 30 минут - это и есть 3,1415. Совпадение? Может быть. Но - вот ещё одно, ещё более странное. Итальянский математик Селла Квитино тоже несколько лет, как он сам туманно выражался, "поддерживал связь с одной милой цифрой". Цифра, по словам Квитино, который уже тогда лежал в психиатрической лечебнице, "обещала сказать своё имя в день своего рождения". Мог ли Квитино настолько лишиться разума, чтобы называть число Пи цифрой, или он так специально запутывал врачей? Не ясно, но 14 марта 1827-го года Квитино не стало.

    А самая загадочная история связана с "великим Харди" (как вы все знаете, так современники называли великого английского математика Годфри Харолда Харди), который вместе со своим приятелем Джоном Литлвудом знаменит работами в теории чисел (особенно в области диофантовых приближений) и теории функций (где друзья прославились исследованием неравенств). Как известно, Харди был официально неженат, хотя не раз заявлял, что "обручён с царицей мира нашего". Коллеги-учёные не раз слышали, как он разговаривает с кем-то в своём кабинете, его собеседника никто никогда не видел, хотя его голос - металлический и чуть скрипучий - долгое время был притчей во языцех в Оксфордском университете, где он работал в последние годы. В ноябре 1947 года эти беседы прекращаются, а 1 декабря 1947 года Харди находят на городской свалке, с пулей в желудке. Версию о самоубийстве подтвердила и записка, где рукой Харди было написано: "Джон, ты увёл у меня царицу, я тебя не виню, но жить без неё я более не могу".

    Связана ли эта история с числом Пи? Пока неясно, но не правда ли, любопытно?

    Вообще говоря, подобных историй можно накопать очень много, и, разумеется, не все они трагичны.

    Но, перейдём к "во-вторых": каким образом число вообще может быть разумным? Да очень просто. Человеческий мозг содержит 100 млрд. нейронов, число знаков Пи после запятой вообще стремится к бесконечности, в общем, по формальным признакам оно может быть разумным. Но ведь если верить работе американского физика Дэвида Бейли и канадских математиков Питера Борвина и Саймона Плофе, последовательность десятичных знаков в Пи подчиняется теории хаоса, грубо говоря, число Пи это и есть хаос в его первозданном виде. Может ли хаос быть разумным? Конечно! Точно так же, как и вакуум, при его кажущейся пустоте, как известно, отнюдь не пуст.

    Более того, при желании, можно этот хаос представить графически - чтобы убедиться, что он может быть разумным. В 1965-ом году американский математик польского происхождения Станислав М. Улам (именно ему принадлежит ключевая идея конструкции термоядерной бомбы), присутствуя на одном очень длинном и очень скучном (по его словам) собрании, чтобы как-то развлечься начал писать на клетчатой бумаге цифры, входящие в число Пи. Поставив в центре 3 и двигаясь по спирали против часовой стрелки, он выписывал 1, 4, 1, 5, 9, 2, 6, 5 и прочие цифры после запятой. Без всякой задней мысли он попутно обводил все простые числа чёрными кружками. Вскоре, к его удивлению, кружки с поразительным упорством стали выстраиваться вдоль прямых - то, что получилось, очень было похоже на нечто разумное. Особенно, после того, как Улам сгенерировал на основе этого рисунка цветовую картину, с помощью специального алгоритма.

    Собственно, эту картинку, которую можно сравнить и с мозгом, и со звёздной туманностью, можно смело называть "мозгом числа Пи". Примерно с помощью такой структуры это число (единственное разумное число во вселенной) и управляет нашим миром. Но - каким образом происходит это управление? Как правило, с помощью неписанных законов физики, химии, физиологии, астрономии, которые контролируются и корректируются разумным числом. Приведённые выше примеры показывают, что разумное число так же нарочно персонифицируется, общаясь с учёными как некая сверхличность. Но если так, приходило ли число Пи в наш мир, в облике обычного человека?

    Сложный вопрос. Может быть приходило, может быть нет, надёжной методки определения этого нет и быть не может, но, если это число во всех случаях определено само собой, то можно предположить, что оно приходило в наш мир как персона в день, соответствующий его значению. Разумеется, идеальной датой рождения Пи является 14 марта 1592-го года (3,141592), однако, надёжной статистики по этому году, увы, нет - известно только, что именно в этом году 14 марта родился Джордж Вильерс Бэкингем - герцог Бэкингем из "Трёх мушкетёров". Он великолепно фехтовал, знал толк в лошадях и соколиной охоте - но был ли он числом Пи? Вряд ли. На роль человеческого воплощения числа Пи мог бы идеально претендовать Дункан МакЛауд, родившийся 14-го марта 1592-го года, в горах Шотландии - если б был реальной личностью.

    Но ведь год (1592) может определяться по собственному, более логичному для Пи летоисчислению. Если принять это предположение, то претендентов на роль числа Пи становится много больше.

    Самый очевидный из них - Альберт Эйнштейн, родившийся 14 марта 1879-го. Но 1879 год это и есть 1592 год относительно 287 года до нашей эры! А почему именно 287? Да потому что именно в этом году родился Архимед, впервые в мире вычисливший число Пи как отношение длины окружности к диаметру и доказавший, что оно одинаково для любого круга! Совпадение? Но не много ли совпадений, как думаете?

    В какой личности Пи персонифицировано сегодня, не ясно, но для того, что бы увидеть значение этого числа для нашего мира, не нужно быть математиком: Пи проявляется во всём, что нас окружает. И это, кстати, очень свойственно для любого разумного существа, каковым, без сомнения, является Пи!

    Что такое ПИН-код?

    Пер-СОНальный ИДЕН-тифи-КА-ЦИ-онный номер.

    Что такое число ПИ?

    Расшифровка числа ПИ (3, 14...) (пин-код), сделать это может любой и без меня, через Глаголицу. Подставляем вместо цифр буквы (числовые значения букв приведены в Глаголице) и получаем вот такую фразу: Глаголи (глаголю, говорю, делаю) Аз (я, ас, мастер, творец) Добро. А если взять следующие цифры, то там получается примерно следующее: "Делаю я добро, я есть Фита (скрытое, внебрачный ребенок, непорочное зачатие, непроявленное, 9), ведаю (познаю) искажение (зло) это есть говорение(действие) воля (желание) Земля делаю познаю делаю воля добро зло (искажение) познаю зло добро делаю"..... и так до бесконечности, там много цифр, но полагаю, что всё об одном и том же...

    Музыка числа ПИ

    Значение числа "Пи", как и его символика известна во всём мире. Этот термин обозначает иррациональные числа (то есть их значение не может быть точно выражено в виде дроби y/x, где y и x - целые числа) и заимствован и древнегреческого фразеологизма "перефериа", что можно перевести на русский, как "окружность".
    Число "Пи" в математике обозначает отношение длины окружности к длине её диаметра. История происхождения числа "Пи" уходит в далёкое прошлое. Множество историков пытались установить, когда и кем был придуман этот символ, но выяснить так и не удалось.

    Число "Пи" является трансцендентным числом, или говоря простыми словами оно не может быть корнем некоего многочлена с целыми коэффициентами. Оно может обозначаться, как вещественное либо, как косвенное число, которое не является алгебраическим.

    Число "Пи" равняется 3,1415926535 8979323846 2643383279 5028841971 6939937510...


    Число "Пи" может быть не только иррациональным числом, которое нельзя выразить с помощью нескольких различных чисел. Число "Пи" можно представить некоей десятичной дроби, которое располагает бесконечным множеством цифр после запятой. Ещё интересный момент - все эти числа не способны повторяться.

    Число "Пи" можно соотнести с дробным числом 22/7, так называемым символом "тройной октавы ". Это число знали ещё древнегреческие жрецы. Кроме того, даже простые жители могли применять его для решения, каких-либо бытовых проблем, а также использовать для проектирования, таких сложнейших строений, как усыпальницы.
    Как заявляет учёный и исследователь Хэйенс, подобное число можно проследить среди развалин Стоунхенджа, а также обнаружить в мексиканских пирамидах.

    Число "Пи" упоминал в своих трудах Ахмес, известный в то время инженер. Он пытался наиболее точно рассчитать его используя для этого измерение диаметра круга по нарисованным внутри него квадратам. Вероятно в некотором смысле это число имеет некий мистический, сакральный для древних смысл.

    Число "Пи" по сути является самым загадочным математическим символом. Его можно причислить к дельте, омеге и др. Оно представляет из себя такое отношение, которое окажется точно таким, независимо в кокой точке мироздания будет находиться наблюдатель. Кроме того, оно будет неизменным от объекта измерения.

    Вероятнее всего, первым человеком, который решил вычислить число "Пи" с помощью математического метода является Архимед. Он решил он рисовал в окружности правильные многоугольники. Считая диаметр окружности единицей, учёный обозначал периметр нарисованного в круге многоугольника, рассматривая периметр вписанного многоугольника, как верхнюю оценку, а как нижнюю оценку длины окружности


    Что такое число "Пи"

    ЧИСЛО ПИ
    Символ ПИ означает отношение длины окружности к ее диаметру. Впервые в этом смысле символ p был использован У. Джонсом в 1707, а Л. Эйлер, приняв это обозначение, ввел его в научный обиход. Еще в древности математикам было известно, что вычисление значения p и площади круга - задачи, тесно связанные между собой. Древние китайцы и древние евреи считали число p равным 3. Значение числа p, равное 3,1605, содержится в древнеегипетском папирусе писца Ахмеса (ок. 1650 до н. э.). Около 225 до н. э. Архимед, используя вписанный и описанный правильные 96-угольники, приближенно вычислил площадь круга с помощью метода, который привел к значению ПИ, заключенному между 31/7 и 310/71. Другое приближенное значение p, эквивалентное обычному десятичному представлению этого числа 3,1416, известно еще со 2 в. Л. ван Цейлен (1540-1610) вычислил значение ПИ с 32 десятичными знаками. К концу 17 в. новые методы математического анализа позволили вычислять значение p множеством различных способов. В 1593 Ф. Виет (1540-1603) вывел формулу

    В 1665 Дж. Валлис (1616-1703) доказал, что


    В 1658 У. Броункер нашел представление числа p в виде непрерывной дроби


    Г.Лейбниц в 1673 опубликовал ряд


    Ряды позволяют вычислять значение p с любым числом десятичных знаков. В последние годы с появлением электронных вычислительных машин значение p было найдено более чем с 10 000 знаков. С десятью знаками значение ПИ равно 3,1415926536. Как число, ПИ обладает некоторыми интересными свойствами. Например, его нельзя представить в виде отношения двух целых чисел или периодической десятичной дроби; число ПИ трансцендентно, т.е. непредставимо в виде корня алгебраического уравнения с рациональными коэффициентами. Число ПИ входит во многие математические, физические и технические формулы, в том числе и не имеющие непосредственного отношения к площади круга или длине дуги окружности. Например, площадь эллипса A определяется формулой A = pab, где a и b - длины большой и малой полуосей.

    Энциклопедия Кольера. - Открытое общество . 2000 .

    Смотреть что такое "ЧИСЛО ПИ" в других словарях:

      число - Прие моч ное Источник: ГОСТ 111 90: Стекло листовое. Технические условия оригинал документа Смотри также родственные термины: 109. Число бетатронных колебаний … Словарь-справочник терминов нормативно-технической документации

      Сущ., с., употр. очень часто Морфология: (нет) чего? числа, чему? числу, (вижу) что? число, чем? числом, о чём? о числе; мн. что? числа, (нет) чего? чисел, чему? числам, (вижу) что? числа, чем? числами, о чём? о числах математика 1. Числом… … Толковый словарь Дмитриева

      ЧИСЛО, числа, мн. числа, чисел, числам, ср. 1. Понятие, служащее выражением количества, то, при помощи чего производится счет предметов и явлений (мат.). Целое число. Дробное число. Именованное число. Простое число. (см. простой1 в 1 знач.).… … Толковый словарь Ушакова

      Абстрактное, лишенное особенного содержания обозначение какоголибо члена некоторого ряда, в котором этому члену предшествует или следует за ним какой нибудь др. определенный член; абстрактный индивидуальный признак, отличающий одно множество от… … Философская энциклопедия

      Число - Число грамматическая категория, выражающая количественные характеристики предметов мысли. Грамматическое число одно из проявлений более обшей языковой категории количества (см. Категория языковая) наряду с лексическим проявлением («лексическое… … Лингвистический энциклопедический словарь

      Число, приближенно равное 2,718, которое часто встречается в математике и естественных науках. Например, при распаде радиоактивного вещества по истечении времени t от исходного количества вещества остается доля, равная e kt, где k число,… … Энциклопедия Кольера

      А; мн. числа, сел, слам; ср. 1. Единица счёта, выражающая то или иное количество. Дробное, целое, простое ч. Чётное, нечётное ч. Считать круглыми числами (приблизительно, считая целыми единицами или десятками). Натуральное ч. (целое положительное … Энциклопедический словарь

      Ср. количество, счетом, на вопрос: сколько? и самый знак, выражающий количество, цифра. Без числа; нет числа, без счету, многое множество. Поставь приборы, по числу гостей. Числа римские, арабские или церковные. Целое число, ·противоп. дробь.… … Толковый словарь Даля

      ЧИСЛО, а, мн. числа, сел, слам, ср. 1. Основное понятие математики величина, при помощи к рой производится счёт. Целое ч. Дробное ч. Действительное ч. Комплексное ч. Натуральное ч. (целое положительное число). Простое ч. (натуральное число, не… … Толковый словарь Ожегова

      ЧИСЛО «Е» (ЕХР), иррациональное число, служащее основанием натуральных ЛОГАРИФМОВ. Это действительное десятичное число, бесконечная дробь, равная 2,7182818284590...., является пределом выражения (1/) при п, стремящемся к бесконечности. По сути,… … Научно-технический энциклопедический словарь

      Количество, наличность, состав, численность, контингент, сумма, цифра; день.. Ср. . См. день, количество. небольшое число, несть числа, расти числом... Словарь русских синонимов и сходных по смыслу выражений. под. ред. Н. Абрамова, М.: Русские… … Словарь синонимов

    Книги

    • Число имени. Тайны нумерологии. Выход из тела для ленивых. Учебник по экстрасенсорике (количество томов: 3) , Лоуренс Ширли. Число имени. Тайны нумерологии. Книга Ширли Б. Лоуренс является всесторонним исследованием древней эзотерической системы – нумерологии. Чтобы научиться использовать вибрации чисел для…
    • Число имени. Сакральное значение чисел. Символика Таро (количество томов: 3) , Успенский Петр. Число имени. Тайны нумерологии. Книга Ширли Б. Лоуренс является всесторонним исследованием древней эзотерической системы – нумерологии. Чтобы научиться использовать вибрации чисел для…