Войти
Образование в России
  • История главного открытия XX века
  • Выбор есть Минский высший радиотехнический колледж проходной балл
  • Ребусы по русскому языку Придумать ребусы по русскому языку
  • Анализ «Премудрый пескарь» Салтыков-Щедрин Описание сказки салтыкова щедрина премудрый пескарь
  • Роль эмоций и чувств в работе педагога методическая разработка на тему
  • В чем заключается смысл 3 закона менделя
  • Кальций и его соединения окрашивают пламя в. Щелочно - земельные металлы

    Кальций и его соединения окрашивают пламя в. Щелочно - земельные металлы

    Кальций – элемент 4‑го периода и IIA‑группы Периодической системы, порядковый номер 2O. Электронная формула атома [ 18 Ar]4s 2 , степени окисления +II и 0. Относится к щелочноземельным металлам.

    Имеет низкую электроотрицательность (1,04), проявляет металлические (основные) свойства. Образует (как катион) многочисленные соли и бинарные соединения. Многие соли кальция малорастворимы в воде.

    В природе – шестой по химической распространенности элемент (третий среди металлов), находится в связанном виде. Жизненно важный элемент для всех организмов.

    Недостаток кальция в почве восполняется внесением известковых удобрений (СаСO 3 , СаО, цианамид кальция CaCN 2 и др.).

    Кальций, катион кальция и его соединения окрашивают пламя газовой горелки в темно‑оранжевый цвет (качественное обнаружение).

    Кальций Са. Серебристо‑белый металл, мягкий, пластичный. Во влажном воздухе тускнеет и покрывается пленкой из СаО и Са(ОН) 2 .

    Весьма реакционноспособный; воспламеняется при нагревании на воздухе, реагирует с водородом, хлором, серой и графитом:

    Восстанавливает другие металлы из их оксидов (промышленно важный метод – кальцийтержия):

    ЗСа + Cr 2 O 3 = ЗСаО + 2Cr (700–800 °C)

    5Са + V 2 O 5 = 5СаО + 2V (950 °C)

    Энергично реагирует с водой (с высоким экзо ‑эффектом):

    Са + 2Н 2 O = Са(ОН) 2 + Н 2 + 413 кДж

    В ряду напряжений стоит значительно левее водорода, из разбавленных кислот НCl и H 2 SO 4 вытесняет водород (за счет Н 2 O и Н +):

    Ca + 2H+ = Са 2+ + Н 2

    Получение кальция в промышленности :

    Кальций применяется для удаления примесей неметаллов из металлических сплавов, как компонент легких и антифрикционных сплавов, для выделения редких металлов из их оксидов.

    Оксид кальция СаО. Основный оксид. Техническое название негашёная известь. Белый, весьма гигроскопичный. Имеет ионное строение Са 2+ O 2‑ . Тугоплавкий, термически устойчивый, летучий при прокаливании. Поглощает влагу и углекислый газ из воздуха. Энергично реагирует с водой (с высоким экзо ‑эффектом), образует сильно щелочной раствор (возможен осадок гидроксида), процесс называется гашение извести. Реагирует с кислотами, оксидами металлов и неметаллов. Применяется для синтеза других соединений кальция, в производстве Са(ОН) 2 , СаС 2 и минеральных удобрений, как флюс в металлургии, катализатор в органическом синтезе, компонент вяжущих материалов в строительстве.

    Уравнения важнейших реакций:

    Получение СаО в промышленности – обжиг известняка (900–1200 °C):

    СаСO 3 =СаО + СO 2

    Гидроксид кальция Са(ОН) 2 . Основный гидроксид. Техническое название гашёная известь. Белый, гигроскопичный. Имеет ионное строение Са 2+ (ОН ‑) 2 . Разлагается при умеренном нагревании. Поглощает влагу и углекислый газ из воздуха. Малорастворим в холодной воде (образуется щелочной раствор), еще меньше – в кипящей воде. Прозрачный раствор (известковая вода) быстро мутнеет из‑за выпадения осадка гидроксида (суспензию называют известковое молоко). Качественная реакция на ион Са 2+ – пропускание углекислого газа через известковую воду с появлением осадка СаСO 3 и переходом его в раствор. Реагирует с кислотами и кислотными оксидами, вступает в реакции ионного обмена.

    Применяется в производстве стекла, белильной извести, известковых минеральных удобрений, для каустификации соды и умягчения пресной воды, а также для приготовления известковых строительных растворов – тестообразных смесей (песок + гашёная известь + вода), служащих связующим материалом для каменной и кирпичной кладки, отделки (оштукатуривания) стен и других строительных целей. Отвердевание («схватывание») таких растворов обусловлено поглощением углекислого газа из воздуха.

    Уравнения важнейших реакций:

    Получение Са(ОН) 2 в промышленности – гашение извести СаО (см. выше).

    5.4. Жёсткость воды

    Природная вода, проходя через известковые горные породы и почвы, обогащается солями кальция и магния (а также железа) и становится жёсткой. В жесткой воде при стирке белья увеличивается расход мыла, а ткань, впитывая соли, становится желтой и быстро ветшает. Накипь – нерастворимые соединения кальция и магния и оксид железами), осаждающиеся на внутренних стенках посуды, паровых котлов и трубопроводов. В жесткой воде дольше варятся овощи, крупы и мясо. Различают временную и постоянную жесткость воды.

    Временная жесткость вызвана присутствием в воде гидрокарбонатов М(НСO 3) 2 (М = Са, Mg) и Fe(HCO 3) 2 . Если количественно определяют содержание ионов HCO 3 ‑ , говорят о карбонатной жесткости, если содержание ионов Са 2+ , Mg 2+ и Fe 2+ – о кальциевой, магниевой или железной жесткости. Временная жесткость тем выше, чем больше содержание этих ионов в воде. Жесткость воды назвали временной потому, что она устраняется простым кипячением:

    Са(НСO 3) 2 = СаСO 3 ↓ + Н 2 O + СO 2

    Mg(HCO 3) 2 = Mg(OH) 2 ↓ + 2СO 2

    4Fe(HCO 3) 2 + O 2 = 2Fe 2 O 3 ↓ + 8CO 2 + 4H 2 O

    Постоянная жесткость обусловлена другими солями кальция и магния (сульфаты, хлориды, нитраты, дигидро‑ортофосфаты и др.). Такая жесткость не устраняется кипячением воды. Поэтому для удаления из жесткой воды большей части всех солей ее умягчают, используя химические реактивы и специальные (ионообменные) способы. Умягченная вода пригодна для питья и приготовления пищи.

    Умягчение воды достигается, если ее обработать различными осадителями – гашеной известью, содой и ортофосфатом натрия:

    устранение временной жесткости:

    Са(НСO 3) 2 + Са(ОН) 2 = 2СаСO 3 ↓ + 2Н 2 O

    Mg(HCO 3) 2 + Ca(OH) 2 = CaMg(CO 3) 2 ↓ + 2Н 2 O

    4Fe(HCO 3) 2 + 8Са(ОН) 2 + O 2 = 4FeO(OH)↓ + 8СаСO 3 ↓ + 10Н 2 O

    устранение постоянной жесткости:

    Ca(NO 3) 2 + Na 2 CO 3 = СаСO 3 ↓ + 2NaNO 3

    2MgSO 4 + Н 2 O = Na 2 CO 3 = Mg 2 CO 3 (OH) 2 ↓ + СO 2 + 2Na 2 SO 4

    3FeCl 2 + 2Na 3 PO 4 = Fe 3 (PO 4) 2 ↓ + 6NaCl

    В химической лаборатории и в промышленности используется полностью обессоленная вода (для питья она непригодна). Для получения обессоленной воды природную воду подвергают перегонке (дистилляции). Такая дистиллированная вода является мягкой, подобно дождевой воде.

    Калий

    Натрий

    Материально-техническое обеспечение дисциплины.

    Дополнительная литература

    Основная литература

    Дисциплины

    Учебно-методическое и информационное обеспечение

    Хаханина Т. И. Химия окружающей среды [Электронный ресурс]: учебное пособие - М.: ЮРАЙТ, 2010. – 129 с. //Университетская библиотека online: сайт. - Режим доступа: http://www.biblioclub.ru

    1. Тарасова, Наталия Павловна. Химия окружающей среды: атмосфера: учеб. пособие для студ. вузов / Н. П. Тарасова, В. А. Кузнецов. - М. : Академия, 2007. - 227 с. Есипов, Юрий Вениаминович.
    Мониторинг и оценка риска систем "защита-объект-среда" / Ю. В. Есипов, Ф. А. Самсонов, А. И. Черемисин; РАН, Юж. науч. центр. - М. : URSS, 2008. - 136 с.

    2. Ларионов Н. М. Промышленная экология. [Электронный ресурс]: Учебник для бакалавров - М.: ЮРАЙТ, 2012. – 496 с. // Университетская библиотека online: сайт. - Режим доступа: http://www.biblioclub.ru

    Для выполнения рабочей программы дисциплины «Химия биосферы» кафедра располагает материально-технической базой, обеспечивающей проведение всех видов подготовки, практической и научно-исследовательской работы обучающихся, соответствующим действующим санитарным и противопожарным правилам и нормам. Интерактивные занятия проводятся в аудиториях, оборудованных мультимедийной аппаратурой и доступом к Интернет.

    Натрий – элемент 3‑го периода и IA‑группы Периодической системы, порядковый номер 11. Электронная формула атома [ 10 Ne]3s 1 , степени окисления +I и 0. Имеет малую электроотрицательность (0,93), проявляет только металлические (основные) свойства. Образует (как катион) многочисленные соли и бинарные соединения. Почти все соли натрия хорошо растворимы в воде.

    В природе – пятый по химической распространенности элемент (второй среди металлов), встречается только в виде соединений. Жизненно важный элемент для всех организмов.

    Натрий, катион натрия и его соединения окрашивают пламя газовой горелки в ярко‑желтый цвет (качественное обнаружение).

    Натрий Na. Серебристо‑белый металл, легкий, мягкий (режется ножом), низкоплавкий. Хранят натрий в керосине. С ртутью образует жидкий сплав – амальгаму (до 0,2 % Na).

    Весьма реакционноспособный, во влажном воздухе натрий медленно покрывается гидроксидной пленкой и теряет блеск (тускнеет):

    Натрий химически активен, сильный восстановитель. Воспламеняется на воздухе при умеренном нагревании (>250 °C), реагирует с неметаллами:

    2Na + O 2 = Na 2 O 2 2Na + H 2 = 2NaH

    2Na + Cl 2 = 2NaCl 2Na + S = Na 2 S



    6Na + N 2 = 2Na 3 N 2Na + 2C = Na 2 C 2

    Очень бурно и с большим экзо ‑эффектом натрий реагирует с водой:

    2Na + 2H 2 O = 2NaOH + Н 2 + 368 кДж

    От теплоты реакции кусочки натрия расплавляются в шарики, которые начинают беспорядочно двигаться из‑за выделения Н 2 . Реакция сопровождается резкими щелчками вследствие взрывов гремучего газа (Н 2 + O 2). Раствор окрашивается фенолфталеином в малиновый цвет (щелочная среда).

    В ряду напряжений натрий стоит значительно левее водорода, из разбавленных кислот HCl и H 2 SO 4 вытесняет водород (за счет Н 2 O и Н +).

    Получение натрия в промышленности:

    (см. также ниже получение NaOH).

    Натрий применяется для получения Na 2 O 2 , NaOH, NaH, а также в органическом синтезе. Расплавленный натрий служит теплоносителем в ядерных реакторах, а газообразный – используется как наполнитель желтосветных ламп наружного освещения.

    Оксид натрия Na 2 O. Основный оксид. Белый, имеет ионное строение (Na +) 2 O 2‑ . Термически устойчивый, при прокаливании медленно разлагается, плавится под избыточным давлением пара Na. Чувствителен к влаге и углекислому газу в воздухе. Энергично реагирует с водой (образуется сильнощелочной раствор), кислотами, кислотными и амфотерными оксидами, кислородом (под давлением). Применяется для синтеза солей натрия. Не образуется при сжигании натрия на воздухе.

    Уравнения важнейших реакций:

    Получение: термическое разложение Na 2 O 2 (см.), а также сплавление Na и NaOH, Na и Na 2 O 2:

    2Na + 2NaOH = 2Na a O + H 2 (600 °C)

    2Na + Na 2 O 2 = 2Na a O (130–200 °C)

    Пероксид натрия Na 2 O 2 . Бинарное соединение. Белый, гигроскопичный. Имеет ионное строение (Na +) 2 O 2 2‑ . При нагревании разлагается, плавится под избыточным давлением O 2 . Поглощает углекислый газ из воздуха. Полностью разлагается водой, кислотами (выделение O 2 при кипячении – качественная реакция на пероксиды). Сильный окислитель, слабый восстановитель. Применяется для регенерации кислорода в изолирующих дыхательных приборах (реакция с СO 2), как компонент отбеливателей ткани и бумаги. Уравнения важнейших реакций:

    2Na 2 O 2 = 2Na 2 O + O 2 (400–675 °C, вакуум)

    Na 2 O 2 + 2Н 2 O = Н 2 O 2 + 2NaOH (на холоду)

    2Na 2 O 2 + 2Н 2 O = O 2 + 4NaOH (кипячение)

    Na 2 O 2 + 2НCl (разб.) = 2NaCl + Н 2 O 2 (на холоду)

    2Na 2 O 2 + 4НCl (разб.) = 4НCl + 2Н 2 O + O 2 (кипячение)

    2Na 2 O 2 + 2CO 2 = Na 2 CO 3 + O 2

    Na 2 O 2 + CO = Na 2 CO 3

    Na 2 O 2 + 4H + + 2I ‑ = I 2 ↓ + 2H 2 O + 2Na +

    5Na 2 O 2 + 16H + + 2MnO 4 ‑ = 5O 2 + 2Mn 2+ + 8H 2 O + 10Na +

    3Na 2 O 2 + 2 3‑ = 2CrO 2 4‑ + 8OH ‑ + 2H 2 O + 6Na + (80 °C)

    Получение: сжигание Na на воздухе.

    Гидроксид натрия NaOH. Основный гидроксид, щелочь, техническое название едкий натр. Белые кристаллы с ионным строением (Na +)(OH ‑). Расплывается на воздухе, поглощая влагу и углекислый газ (образуется NaHCO 3). Плавится и кипит без разложения. Вызывает тяжелые ожоги кожи и глаз.

    Хорошо растворим в воде (с экзо ‑эффектом, +56 кДж). Реагирует с кислотными оксидами, нейтрализует кислоты, вызывает кислотную функцию у амфотерных оксидов и гидроксидов:

    NaOH (разб.) + H 3 PO 4 (конц.) = NaH 2 PO 4 + H 2 O

    2NaOH (разб.) + H 3 PO 4 (разб.) = Na 2 HPO 4 + 2H 2 O

    3NaOH (конц.) + H 3 PO 4 (разб.) = Na 3 PO 4 + 3H 2 O

    2NaOH (T) + M 2 O 3 = 2NaMO 2 + H 2 O (1000 °C, M = Al, Cr)

    2NaOH (конц.) + 3H 2 O + AI 2 O 3 = 2Na (кипячение)

    2NaOH (T) + M(OH) 2 = Na 2 MO 2 + 2H 2 O (500 °C, M = Be, Zn)

    2NaOH (конц.) + Zn(OH) 2 = Na 2

    Осаждает нерастворимые гидроксиды:

    2NaOH + MCl 2 = 2NaCl + M(OH) 2 ↓ (M = Mg, Cu)

    Подвергает дисмутации галогены и серу:

    2NaOH (конц., хол.) + Е 2 = NaE + NaEO + H 2 O (Е = Cl, Br)

    6NaOH (разб., гор.) + 3S = 2Na 2 S + Na 2 SO 3 + 3H 2 O

    Подвергается электролизу в расплаве:

    Раствор NaOH разъедает стекло (образуется NaSiO 3), корродирует поверхность алюминия (образуются Na и Н 2).

    Получение NaOH в промышленности :

    а) электролиз раствора NaCl на инертном катоде:

    б) электролиз раствора NaCl на ртутном катоде (амальгамный способ):

    (освобождающуюся ртуть возвращают в электролизер).

    Едкий натр – важнейшее сырье химической промышленности. Используется для получения солей натрия, целлюлозы, мыла, красителей и искусственного волокна; как осушитель газов; реагент в извлечении из вторичного сырья и очистке олова и цинка; при переработке руд алюминия (бокситов).

    Калий – элемент 4‑го периода и IA‑группы Периодической системы, порядковый номер 19. Электронная формула атома [ 18 Ar]4s 1 , степени окисления +I и 0. Имеет малую электроотрицательность (0,91), проявляет металлические (основные) свойства. Образует (как катион) многочисленные соли и бинарные соединения. Почти все соли калия хорошо растворимы в воде.

    В природе – девятый по химической распространенности элемент (шестой среди металлов), находится только в виде соединений. Жизненно важный элемент для всех организмов.

    Недостаток калия в почве восполняется внесением калийных удобрений – хлорида КCl, сульфата K 2 SO 4 и золы растений.

    Калий, катион калия и его соединения окрашивают пламя газовой горелки в фиолетовый цвет (качественное обнаружение).

    Калий К. Серебристо‑белый металл, легкий, очень мягкий, низкоплавкий. Хранят калий под слоем керосина. С ртутью образует жидкий сплав – амальгаму.

    По химическим свойствам похож на натрий, но еще более реакционноспособный. Во влажном воздухе тускнеет, покрываясь гидроксидной пленкой.

    Калий проявляет сильные восстановительные свойства. Активно сгорает на воздухе до КO 2 , реагирует с водородом (продукт KH), хлором (КCl), серой (K 2 S).

    Энергично и с высоким экзо ‑эффектом калий разлагает воду:

    2К + 2H 2 O = 2KOH + Н 2 + 392 кДж,

    выделяющийся водород тут же воспламеняется.

    В ряду напряжений калий стоит значительно левее водорода, из разбавленных кислот HCl и H 2 SO 4 вытесняет водород (за счет Н 2 O и Н +), при этом серная кислота частично восстанавливается до SO 2 .

    Получение калия в промышленности одинаково с получением натрия.

    Применяется калий для синтеза его соединений (КO 2 , KH, соли), в виде расплава (в смеси с Na) – как теплоноситель в ядерных реакторах.

    Гидроксид калия КОН. Основный гидроксид, щёлочь, техническое название едкое кали. Белый, имеет ионное строение К + ОН ‑ . Плавится и кипит без разложения. Расплывается на воздухе, поглощает углекислый газ (образуется КНСO 3). Вызывает тяжелые ожоги кожи и глаз.

    Хорошо растворим в воде (с высоким экзо ‑эффектом), создает в растворе сильнощелочную среду. Нейтрализуется кислотами, реагирует с кислотными оксидами, амфотерными гидроксидами и оксидами. Концентрированный раствор разъедает стекло (образуется K 2 SiO 3).

    Важнейшие реакции и методы получения КОН в промышленности аналогичны свойствам и получению NaOH.

    Применяется КОН в производстве мыла, как адсорбент газов, дегидратирующий агент, осадитель нерастворимых гидроксидов металлов.

    Кальций – элемент 4‑го периода и IIA‑группы Периодической системы, порядковый номер 2O. Электронная формула атома [ 18 Ar]4s 2 , степени окисления +II и 0. Относится к щелочноземельным металлам.

    Имеет низкую электроотрицательность (1,04), проявляет металлические (основные) свойства. Образует (как катион) многочисленные соли и бинарные соединения. Многие соли кальция малорастворимы в воде.

    В природе – шестой по химической распространенности элемент (третий среди металлов), находится в связанном виде. Жизненно важный элемент для всех организмов.

    Недостаток кальция в почве восполняется внесением известковых удобрений (СаСO 3 , СаО, цианамид кальция CaCN 2 и др.).

    Кальций, катион кальция и его соединения окрашивают пламя газовой горелки в темно‑оранжевый цвет (качественное обнаружение).

    Кальций Са. Серебристо‑белый металл, мягкий, пластичный. Во влажном воздухе тускнеет и покрывается пленкой из СаО и Са(ОН) 2 .

    Весьма реакционноспособный; воспламеняется при нагревании на воздухе, реагирует с водородом, хлором, серой и графитом:

    Восстанавливает другие металлы из их оксидов (промышленно важный метод – кальцийтержия):

    ЗСа + Cr 2 O 3 = ЗСаО + 2Cr (700–800 °C)

    5Са + V 2 O 5 = 5СаО + 2V (950 °C)

    Энергично реагирует с водой (с высоким экзо ‑эффектом):

    Са + 2Н 2 O = Са(ОН) 2 + Н 2 + 413 кДж

    В ряду напряжений стоит значительно левее водорода, из разбавленных кислот НCl и H 2 SO 4 вытесняет водород (за счет Н 2 O и Н +):

    Ca + 2H+ = Са 2+ + Н 2

    Получение кальция в промышленности :

    Кальций применяется для удаления примесей неметаллов из металлических сплавов, как компонент легких и антифрикционных сплавов, для выделения редких металлов из их оксидов.

    Оксид кальция СаО. Основный оксид. Техническое название негашёная известь. Белый, весьма гигроскопичный. Имеет ионное строение Са 2+ O 2‑ . Тугоплавкий, термически устойчивый, летучий при прокаливании. Поглощает влагу и углекислый газ из воздуха. Энергично реагирует с водой (с высоким экзо ‑эффектом), образует сильно щелочной раствор (возможен осадок гидроксида), процесс называется гашение извести. Реагирует с кислотами, оксидами металлов и неметаллов. Применяется для синтеза других соединений кальция, в производстве Са(ОН) 2 , СаС 2 и минеральных удобрений, как флюс в металлургии, катализатор в органическом синтезе, компонент вяжущих материалов в строительстве.

    Уравнения важнейших реакций:

    Получение СаО в промышленности – обжиг известняка (900–1200 °C):

    СаСO 3 =СаО + СO 2

    Гидроксид кальция Са(ОН) 2 . Основный гидроксид. Техническое название гашёная известь. Белый, гигроскопичный. Имеет ионное строение Са 2+ (ОН ‑) 2 . Разлагается при умеренном нагревании. Поглощает влагу и углекислый газ из воздуха. Малорастворим в холодной воде (образуется щелочной раствор), еще меньше – в кипящей воде. Прозрачный раствор (известковая вода) быстро мутнеет из‑за выпадения осадка гидроксида (суспензию называют известковое молоко). Качественная реакция на ион Са 2+ – пропускание углекислого газа через известковую воду с появлением осадка СаСO 3 и переходом его в раствор. Реагирует с кислотами и кислотными оксидами, вступает в реакции ионного обмена.

    Применяется в производстве стекла, белильной извести, известковых минеральных удобрений, для каустификации соды и умягчения пресной воды, а также для приготовления известковых строительных растворов – тестообразных смесей (песок + гашёная известь + вода), служащих связующим материалом для каменной и кирпичной кладки, отделки (оштукатуривания) стен и других строительных целей. Отвердевание («схватывание») таких растворов обусловлено поглощением углекислого газа из воздуха.

    Уравнения важнейших реакций:

    Получение Са(ОН) 2 в промышленности – гашение извести СаО (см. выше).

    5.4. Жёсткость воды

    Природная вода, проходя через известковые горные породы и почвы, обогащается солями кальция и магния (а также железа) и становится жёсткой. В жесткой воде при стирке белья увеличивается расход мыла, а ткань, впитывая соли, становится желтой и быстро ветшает. Накипь – нерастворимые соединения кальция и магния и оксид железами), осаждающиеся на внутренних стенках посуды, паровых котлов и трубопроводов. В жесткой воде дольше варятся овощи, крупы и мясо. Различают временную и постоянную жесткость воды.

    Временная жесткость вызвана присутствием в воде гидрокарбонатов М(НСO 3) 2 (М = Са, Mg) и Fe(HCO 3) 2 . Если количественно определяют содержание ионов HCO 3 ‑ , говорят о карбонатной жесткости, если содержание ионов Са 2+ , Mg 2+ и Fe 2+ – о кальциевой, магниевой или железной жесткости. Временная жесткость тем выше, чем больше содержание этих ионов в воде. Жесткость воды назвали временной потому, что она устраняется простым кипячением:

    Са(НСO 3) 2 = СаСO 3 ↓ + Н 2 O + СO 2

    Mg(HCO 3) 2 = Mg(OH) 2 ↓ + 2СO 2

    4Fe(HCO 3) 2 + O 2 = 2Fe 2 O 3 ↓ + 8CO 2 + 4H 2 O

    Постоянная жесткость обусловлена другими солями кальция и магния (сульфаты, хлориды, нитраты, дигидро‑ортофосфаты и др.). Такая жесткость не устраняется кипячением воды. Поэтому для удаления из жесткой воды большей части всех солей ее умягчают, используя химические реактивы и специальные (ионообменные) способы. Умягченная вода пригодна для питья и приготовления пищи.

    Умягчение воды достигается, если ее обработать различными осадителями – гашеной известью, содой и ортофосфатом натрия:

    устранение временной жесткости:

    Са(НСO 3) 2 + Са(ОН) 2 = 2СаСO 3 ↓ + 2Н 2 O

    Mg(HCO 3) 2 + Ca(OH) 2 = CaMg(CO 3) 2 ↓ + 2Н 2 O

    4Fe(HCO 3) 2 + 8Са(ОН) 2 + O 2 = 4FeO(OH)↓ + 8СаСO 3 ↓ + 10Н 2 O

    устранение постоянной жесткости:

    Ca(NO 3) 2 + Na 2 CO 3 = СаСO 3 ↓ + 2NaNO 3

    2MgSO 4 + Н 2 O = Na 2 CO 3 = Mg 2 CO 3 (OH) 2 ↓ + СO 2 + 2Na 2 SO 4

    3FeCl 2 + 2Na 3 PO 4 = Fe 3 (PO 4) 2 ↓ + 6NaCl

    В химической лаборатории и в промышленности используется полностью обессоленная вода (для питья она непригодна). Для получения обессоленной воды природную воду подвергают перегонке (дистилляции). Такая дистиллированная вода является мягкой, подобно дождевой воде.

    Продолжение. См. № 1, 3–15, 18, 19, 21, 22, 24–31, 33–35, 37, 40, 43 –48/98; 1–5/99

    Пособие для учителей средних школ и преподавателей технических лицеев

    Р.А.Лидин

    Справочник по общей и неорганической химии

    10.1.3. Кальций

    Общая характеристика элемента

    Элемент 4-го периода и IIа группы периодической системы, порядковый номер 20, относится к щелочно-земельным металлам. Электронная формула атома [ 18 Ar]4s 2 , характерная степень окисления +2. Имеет низкую электроотрицательность. Проявляет металлические (осноRвные) свойства. Многие соли кальция малорастворимы в воде. Кальций, катион кальция и его соединения окрашивают пламя газовой горелки в темно-оранжевый цвет (качественное обнаружение).

    В природе – шестой по химической распространенности элемент. В земной коре (третий – среди металлов) находится в связанном виде, входит в состав многих минералов и горных пород. Присутствует в природных водах и определяет большую часть их «жесткости» (вместе с магнием); 1 л морской соли содержит 0,4 г ионов Ca 2+ .

    Жизненно важный элемент для всех организмов. Концентрируется в костях и зубах в виде различных фосфатов, суточная норма для человека составляет ~1г кальция. Ионы Ca 2+ обеспечивают свертываемость крови, недостаток кальция вызывает размягчение костей и рахит. Из карбоната кальция построены кораллы и раковины моллюсков. Недостаток кальция в почве восполняется внесением известковых удобрений (CaCO 3 , CaO, CaCN 2 и др.).

    Физические свойства и получения кальция и его соединений

    Химические свойства кальция и его соединений

    38. Са – кальций. Простое вещество. Белый, пластичный. Во влажном состоянии покрывается оксидно-гидроксидной пленкой. Весьма реакционноспособный, воспламеняется при нагревании на воздухе. Сильный восстановитель, в ряду напряжений стоит значительно левее водорода. Энергично реагирует с водой (с сильным экзоэффектом), кислотами, неметаллами. Катион Са 2+ в растворе – бесцветный аквакомплекс 2+ (протолизу не подвергается).

    Применяется для удаления примесей неметаллов из металлических сплавов, как компонент легких и антифрикционных сплавов, для восстановления многих металлов из их оксидов.

    1) Ca + 2H 2 O = Ca(OH) 2 Ї + H 2 ­ (D H 0 = –413 кДж);

    2) Ca + 2HCl (разб.) = CaCl 2 + H 2 ­ ;

    3) 4Ca + 10HNO 3 (разб.) = 4Ca(NO 3) 2 + N 2 O ­ + 5H 2 O,

    4Ca + 10HNO 3 (оч. разб.) = 4Ca(NO 3) 2 + NH 4 NO 3 + 3H 2 O;

    4) Ca + H 2 = CaH 2 (500–700 °С);

    5) 2Ca + O 2 (воздух) = 2CaO (300–450 °С),

    3Ca + N 2 (воздух) = Ca 3 N 2 (нитрид) (200–450 °С);

    6) Ca + Cl 2 = CaCl 2 (200–250 °С),

    Ca + S = CaS (150 °С),

    Ca + 2C (графит) = CaC 2 (550 °С);

    7) Ca + 2MCl = CaCl 2 + 2M (700–800 °С, вак., M = Rb, Cs),

    3Ca + Cr 2 O 3 = 3CaO + 2Cr (700–800 °С),

    5Ca + V 2 O 5 = 5CaO + 2V (950 °С).

    39. СаО – оксид кальция. Основной оксид. Белый, весьма гигроскопичный. Имеет ионное строение Са 2+ О 2– . Тугоплавкий, термически устойчивый, летучий при прокаливании. Поглощает углекислый газ из воздуха. Энергично реагирует с водой (с высоким экзоэффектом), образует сильнощелочной раствор (возможен осадок гидроксида). Реагирует с кислотами, оксидами металлов и неметаллов.

    Применяется для синтеза других соединений кальция, в производстве Ca(ОН) 2 , СаС 2 и минеральных удобрений, как флюс в металлургии, катализатор в органическом синтезе, компонент вяжущих материалов в строительстве.

    1) СаО + H 2 O = Ca(OH) 2 (D H 0 = –64 кДж, «гашение» извести);

    2) СаО + 2HCl (разб.) = CaCl 2 + H 2 O;

    СаО + SiO 2 = CaSiO 3 (1100–1200 °С);

    4) СаО + Al 2 O 3 = (CaAl 2)O 4 (1200–1300 °С),

    СаО + TiO 2 = (CaTi)O 3 (900–1100 °С),

    СаО + Fe 2 O 3 = (CaFe 2)O 4 (900–1000 °С);

    5) СаО + 3C (кокс) = CaC 2 + CO (1000–1200 °С);

    6) 4СаО + 2Al = 3Ca + (CaAl 2)O 4 (1200 °С).

    40. Са(ОН) 2 – гидроксид кальция . Основный гидроксид. Белый, гигроскопичный. Имеет ионное строение Са 2+ (ОН –) 2 . Разлагается при умеренном нагревании. Поглощает углекислый газ из воздуха. Мало- растворим в холодной воде (образуется щелочной раствор), еще меньше – в кипящей воде. Реагирует с кислотами, кислотными оксидами. Качественная реакция на ион Са 2+ – см. рубрику 40 6 . Применяется в производстве стекла, вяжущих строительных растворов, белильной извести, известковых минеральных удобрений, для каустификации соды и умягчения пресной воды.

    1) Са(ОН) 2 = CaO + H 2 O (520–580 °С);

    2) Са(ОН) 2 (насыщ.) = Ca 2+ + 2OH – (pH > 7, «известковая вода»);

    3) Са(ОН) 2 + 2HCl (разб.) = CaCl 2 + 2H 2 O;

    4) Са(ОН) 2 + H 2 SO 4 (разб.) = CaSO 4 Ї + 2H 2 O,

    Са(ОН) 2 + 2H 2 SO 4 (конц.) = Ca(HSO 4) 2 + 2H 2 O,

    2Са(ОН) 2 (изб.) + H 2 SO 4 (оч. разб.) = Ca 2 SO 4 (OH) 2 Ї + 2H 2 O;

    6) a) Са(ОН) 2 + 2H 3 PO 4 (конц.) = Ca(H 2 PO 4) 2 Ї +2H 2 O,

    Б) Са(ОН) 2 + H 3 PO 4 (разб.) = CaHPO 4 Ї + 2H 2 O,

    В) 3Са(ОН) 2 + 2H 3 PO 4 (разб.) = Ca 3 (PO 4) 2 Ї + 6H 2 O,

    Г) 5Са(ОН) 2 (изб.) + 3H 3 PO 4 (разб.) = Ca 5 (PO 4) 3 OH Ї +9H 2 O;

    7) 2Са(ОН) 2 (суспензия) + 2Cl 2 (г.) = CaCl 2 + Ca(ClO) 2 + 2H 2 O;

    8) Са(ОН) 2 + 2NH 4 Cl = CaCl 2 + 2NH 3 ­ + 2H 2 O (кип.);

    9) Са(ОН) 2 (насыщ.) + Na 2 CO 3 = CaCO 3 Ї + 2NaOH.

    41. СаСО 3 – карбонат кальция. Оксосоль. Белый, при прокаливании разлагается, плавится под избыточным давлением СО 2 . Нерастворим в воде. Реагирует с кислотами, солями аммония (в горячем растворе), углеродом. Переводится в раствор в водной среде действием избытка углекислого газа с образованием гидрокарбоната Ca(HCO 3) 2 (существует только в растворе), который определяет «временную» жесткость пресной воды (вместе с солями магния и железа). Устранение жесткости (умягчение воды) проводится кипячением или нейтрализацией гашеной известью. Распространенное в природе вещество (минерал кальцит, горная порода известняк и его разновидности – мел, мрамор, мергель, туф).

    Применяется для производства СаО, СО 2 , цемента, стекла и минеральных удобрений, как наполнитель бумаги и резины, строительный камень (щебень) и компонент бетона и шифера, в виде осажденного порошка – для изготовления школьных мелков, зубных порошков и паст, при побелке помещений.

    1) СаСО 3 = CaO + CO 2 (900–1200 °С, обжиг известняка);

    2) СаСО 3 + 2HCl (разб.) = CaCl 2 + CO 2 ­ + H 2 O;

    4) СаСО 3 + 2NH 4 Cl (конц.) = CaCl 2 + 2NH 3 ­ + CO 2 ­ + H 2 O (кип.);

    5) СаСО 3 + C (кокс) = CaO + 2CO (800–850 °С).

    Кальций - элемент 4-го периода и ПА-группы Периодической системы, порядковый номер 20. Электронная формула атома [ 18 Ar]4s 2 , степени окисления +2 и 0. Относится к щелочноземельным металлам. Имеет низкую электроотрицательность (1,04), проявляет металлические (основные) свойства. Образует (как катион) многочисленные соли и бинарные соединения. Многие соли кальция малорастворимы в воде. В природе — шестой по химической распространенности элемент (третий среди металлов), находится в связанном виде. Жизненно важный элемент для всех организмов.Недостаток кальция в почве восполняется внесением известковых удобрений (СаС0 3 , СаО, цианамид кальция CaCN 2 и др.). Кальций, катион кальция и его соединения окрашивают пламя газовой горелки в темно-оранжевый цвет (качественное обнаружение ).

    Кальций Са

    Серебристо-белый металл, мягкий, пластичный. Во влажном воздухе тускнеет и покрывается пленкой из СаО и Са(ОН) 2 .Весьма реакционноспособный; воспламеняется при нагревании на воздухе, реагирует с водородом, хлором, серой и графитом:

    Восстанавливает другие металлы из их оксидов (промышленно важный метод — кальцийтермия ):

    Получение кальция в промышленности :

    Кальций применяется для удаления примесей неметаллов из металлических сплавов, как компонент легких и антифрикционных сплавов, для выделения редких металлов из их оксидов.

    Оксид кальция СаО

    Основный оксид. Техническое название негашёная известь. Белый, весьма гигроскопичный. Имеет ионное строение Ca 2+ O 2- . Тугоплавкий, термически устойчивый, летучий при прокаливании. Поглощает влагу и углекислый газ из воздуха. Энергично реагирует с водой (с высоким экзо- эффектом), образует сильно щелочной раствор (возможен осадок гидроксида), процесс называется гашение извести. Реагирует с кислотами, оксидами металлов и неметаллов. Применяется для синтеза других соединений кальция, в производстве Са(ОН) 2 , СаС 2 и минеральных удобрений, как флюс в металлургии, катализатор в органическом синтезе, компонент вяжущих материалов в строительстве.

    Уравнения важнейших реакций:

    Получение СаО в промышленности — обжиг известняка (900-1200 °С):

    СаСО3 = СаО + СО2

    Гидроксид кальция Са(ОН) 2

    Основный гидроксид. Техническое название гашёная известь. Белый, гигроскопичный. Имеет ионное строение Са 2+ (ОН —) 2 . Разлагается при умеренном нагревании. Поглощает влагу и углекислый газ из воздуха. Малорастворим в холодной воде (образуется щелочной раствор), еще меньше — в кипящей воде. Прозрачный раствор (известковая вода) быстро мутнеет из-за выпадения осадка гидроксида (суспензию называют известковое молоко). Качественная реакция на ион Са 2+ — пропускание углекислого газа через известковую воду с появлением осадка СаС0 3 и переходом его в раствор. Реагирует с кислотами и кислотными оксидами, вступает в реакции ионного обмена. Применяется в производстве стекла, белильной извести, известковых минеральных удобрений, для каустификации соды и умягчения пресной воды, а также для приготовления известковых строительных растворов — тестообразных смесей (песок + гашёная известь + вода), служащих связующим материалом для каменной и кирпичной кладки, отделки (оштукатуривания) стен и других строительных целей. Отвердевание («схватывание») таких растворов обусловлено поглощением углекислого газа из воздуха.

    Описание:

    Смачивая медную пластинку в соляной кислоте и поднося к пламени горелки, замечаем интересный эффект - окрашивание пламени. Огонь переливается красивыми сине-зелеными оттенками. Зрелище довольно впечатляющее и завораживающее.

    Медь придает пламени зеленый оттенок. При высоком содержании меди в сгораемом веществе пламя имело бы яркий зеленый цвет. Окислы же меди дают изумрудно-зеленое окрашивание. Например, как видно из ролика, при смачивании меди соляной кислотой пламя окрашивается в голубой цвет с зеленоватым оттенком. А прокаленные медьсодержащие соединения, смоченные в кислоте, окрашивают пламя в лазурно-голубой цвет.

    Для справки: Зеленый цвет и его оттенки огню придают также барий, молибден, фосфор, сурьма.

    Объяснение:

    Почему пламя видимое? Или чем определяется его яркость?

    Некоторое пламя почти не видно, а другое наоборот светит очень ярко. Например, водород горит почти совершенно бесцветным пламенем; пламя чистого спирта тоже светит весьма слабо, а свеча и керосиновая лампа горят ярким светящимся пламенем.

    Дело в том, что большая или меньшая яркость всякого пламени зависит от присутствия в нем раскаленных твердых частичек.

    В топливе в большем или меньшем количестве содержится углерод. Частички углерода, раньше чем сгореть, накаливаются, - оттого-то пламя газовой горелки, керосиновой лампы и свечи светит - т.к. его подсвечивают раскаленные частицы углерода.

    Таким образом, можно и несветящееся или слабо светящееся пламя сделать ярким, обогащая его углеродом или раскаляя им негорючие вещества.

    Как получить разноцветное пламя?

    Для получения цветного пламени к горящему веществу прибавляют не углерод, а соли металлов, окрашивающих пламя в тот или иной цвет.

    Стандартный способ окрашивания слабосветящегося газового пламени - введение в него соединений металлов в форме легколетучих солей - обычно, нитратов (соли азотной кислоты) или хлоридов (соли соляной кислоты):

    желтое - соли натрия,

    красное - соли стронция, кальция,

    зеленое - соли цезия (или бора, в виде борноэтилового или борнометилового эфира),

    голубое - соли меди (в виде хлорида).

    В синий окрашивает пламя селен, а в сине-зеленый - бор.

    Этой способностью горящих металлов и их летучих солей придавать определенную окраску бесцветному пламени пользуются для получения цветных огней (например, в пиротехнике).

    Чем определяется цвет пламени (научным языком)

    Цвет огня определяется температурой пламени и тем, какие химические вещества в нём сгорают. Высокая температура пламени дает возможность атомам перескакивать на некоторое время в более высокое энергетическое состояние. Когда атомы возвращаются в исходное состояние, они излучают свет с определённой длиной волны. Она соответствует структуре электронных оболочек данного элемента.