Войти
Образование в России
  • Решить систему сравнений
  • Мавритания. Общие впечатления. Мавританцы Наука и культура Мавритании
  • Графики линейных функций
  • Сфера, вписанная в цилиндр, конус и усеченный конус
  • Согласные звуки в русском языке П парный
  • Воздействие частот в герцах (Гц) на организм
  • Радиолокационные станции: история и основные принципы работы. Смотреть что такое "РЛС" в других словарях Как работает сферическая радиолокационная станция

    Радиолокационные станции: история и основные принципы работы. Смотреть что такое

    В нашей стране официально зарегистрировано и разрешено к медицинскому применению почти 15 тысяч лекарств и еще несколько тысяч биологически активных добавок к пище. Если же их считать с лекарственными формами, то наберется несколько десятков тысяч. Так что запутаться ничего не стоит. Чтобы вы всегда могли найти ответ на свой запрос, создатели системы РЛС поместили все имеющиеся сведения в базу данных, которая и служит основой для всех справочников системы РЛС. О каждом из них мы подробнее скажем ниже. А сейчас главное понять, что исчерпывающую информацию можно получить, только если пользоваться всей системой , а не отдельной ее частью.

    Из чего состоит система РЛС?

    Книга, которую вы держите в руках – РЛС-ПАЦИЕНТ, является частью уникальной системы справочников РЛС России. Эта система информации о лекарствах включает в себя четыре ежегодных печатных издания с общим тиражом около 300 000 экземпляров и три электронных справочника (рисунок 2.2.2).

    ЭНЦИКЛОПЕДИЯ ЛЕКАРСТВ (вверху слева на рисунке 2.2.2) содержит новейшую информацию об отечественных и зарубежных препаратах (включая субстанции, биологически активные добавки к пище, гомеопатические и диагностические средства), заявленных производителями к поставкам. Книга подготовлена ведущими фармакологами страны и рассчитана на врачей, провизоров и других специалистов сферы лекарственного обеспечения. Ежегодное издание, снабженное предметным, фармакологическим, нозологическим на основе Международной классификации болезней десятого пересмотра (МКБ-10) указателями, указателем анатомо-терапевтическо-химической классификации, цветным идентификатором лекарств, указателем производителей лекарственных средств или их представительств в России с адресами офисов и перечнем выпускаемой продукции.

    РЛС-АПТЕКАРЬ (вторая сверху книга слева на рисунке 2.2.2) включает все, что зарегистрировано в России. Содержит информацию обо всех лекарственных средствах и биологически активных добавках к пище, зарегистрированных в России, а также о многих изделиях медицинского назначения, санитарно-гигиенических средствах, средствах ухода за больными и о многих других товарах, которые вы можете встретить в аптеках. А это ни много ни мало свыше 50 000 названий. Объединяет все официальные сведения из Государственного реестра лекарственных средств, Федерального реестра биологически активных добавок к пище, Федерального реестра гигиенических заключений. Ежегодное издание. Полная информация для провизора – все существующие формы выпуска, условия хранения, сроки годности, условия отпуска, принадлежность к различным спискам и многое другое. Легкий поиск синонимов и аналогов по действующим веществам и Фармакологическому указателю.

    РЛС-ДОКТОР (вверху справа на рисунке 2.2.2) обеспечит неоценимую помощь практикующим врачам при назначении лекарств. Ежегодное издание. Наиболее часто используемые лекарства и их подробные описания. Нозологический указатель, основанный на МКБ-10. Адреса, телефоны производителей.

    РЛС-ПАЦИЕНТ – книга о механизмах действия лекарств и обеспечении хорошего самочувствия. Она поможет врачу повысить эффективность общения с пациентом и, как следствие, сделает лечение более продуктивным. Эта книга у вас в руках, и вы можете оценить ее.

    Компьютерная версия РЛС-CD: ЭНЦИКЛОПЕДИЯ ЛЕКАРСТВ – вся накопленная база данных РЛС для настоящих профессионалов, кто хочет узнавать новости раньше всех и ценит свое время. Ежеквартальное обновление, современный дружелюбный интерфейс, различные варианты поиска, включая контекстный.

    РЛС-CD: НОМЕНКЛАТУРА ЛЕКАРСТВЕННЫХ СРЕДСТВ – полный перечень зарегистрированной в России фармацевтической продукции. Включает сочетание 21 признака, описывающего торговую упаковку товара. Единый язык для общения на фармацевтическом рынке, позволяющий внедрить базу данных РЛС в свою информационную среду и обеспечить связь с другими системами, использующими номенклатуру РЛС.

    Радиолокационная станция

    Запрос «РЛС» перенаправляется сюда; о регистре лекарственных средств см. Регистр лекарственных средств.

    Радиолокационная станция (РЛС) или рада́р (англ. radar от RA dio D etection A nd R anging - радиообнаружение и дальнометрия) - система для обнаружения воздушных, морских и наземных объектов, а также для определения их дальности, скорости и геометрических параметров. Использует метод, основанный на излучении радиоволн и регистрации их отражений от объектов. Английский термин-акроним появился в 1941 году , впоследствии в его написании прописные буквы были заменены строчными.

    История

    В СССР и России

    В Советском Союзе осознание необходимости средств обнаружения авиации, свободных от недостатков звукового и оптического наблюдения, привела к разворачиванию исследований в области радиолокации. Идея, предложенная молодым артиллеристом Павлом Ощепковым получила одобрение высшего командования: наркома обороны СССР К. Е. Ворошилова и его заместителя - М. Н. Тухачевского .

    В 1946 году американские специалисты - Реймонд и Хачертон, бывший сотрудник посольства США в Москве, написали: «Советские учёные успешно разработали теорию радара за несколько лет до того, как радар был изобретён в Англии».

    Классификация

    По сфере применения различают
    • военные;
    • гражданские;
    По назначению
    • РЛС обнаружения;
    • РЛС управления и слежения;
    • Панорамные РЛС;
    • РЛС бокового обзора;
    • Метеорологические РЛС;
    • РЛС целеуказания;
    • РЛС обзора обстановки;
    По характеру носителя
    • Береговые РЛС
    • Морские РЛС
    • Бортовые РЛС
    • Мобильные РЛС
    По типу действия
    • Первичные или пассивные
    • Вторичные или активные
    • Совмещённые
    По методу действия
    • Надгоризонтный радиолокатор
    По диапазону волн
    • Метровые
    • Дециметровые
    • Сантиметровые
    • Миллиметровые

    Устройство и принцип действия Первичного радиолокатора

    Первичный (пассивный) радиолокатор, в основном, служит для обнаружения целей, освещая их электромагнитной волной и затем принимая отражения (эхо) этой волны от цели. Поскольку скорость электромагнитных волн постоянна (скорость света), становится возможным определить расстояние до цели, основываясь на измерении различных параметров распространения сигнала.

    В основе устройства радиолокационной станции лежат три компонента: передатчик , антенна и приёмник .

    Передатчик (передающее устройство) является источником электромагнитного сигнала высокой мощности. Он может представлять собой мощный импульсный генератор. Для импульсных РЛС сантиметрового диапазона - обычно магнетрон или импульсный генератор работающий по схеме: задающий генератор - мощный усилитель, использующий в качестве генератора чаще всего лампу бегущей волны , а для РЛС метрового диапазона, часто используют - триодную лампу. В зависимости от конструкции, передатчик работает либо в импульсном режиме, формируя повторяющиеся короткие мощные электромагнитные импульсы, либо излучает непрерывный электромагнитный сигнал.

    Антенна выполняет фокусировку сигнала передатчика и формирование диаграммы направленности , а также приём отражённого от цели сигнала и передачу этого сигнала в приёмник. В зависимости от реализации приём отражённого сигнала может осуществляться либо той же самой антенной, либо другой, которая иногда может располагаться на значительном расстоянии от передающего устройства. В случае, если передача и приём совмещены в одной антенне, эти два действия выполняются поочерёдно, а чтобы мощный сигнал, просачивающийся от передающего передатчика в приёмник не ослепил приёмник слабого эха, перед приёмником размещают специальное устройство, закрывающее вход приёмника в момент излучения зондирующего сигнала.

    Приёмник (приёмное устройство) выполняет усиление и обработку принятого сигнала. В самом простом случае результирующий сигнал подаётся на лучевую трубку (экран), которая показывает изображение, синхронизированное с движением антенны.

    Различные РЛС основаны на различных методах измерения отражённого сигнала:

    Частотный метод

    Частотный метод измерения дальности основан на использовании частотной модуляции излучаемых непрерывных сигналов. В данном методе за период излучается частота, меняющаяся по линейному закону от f1 до f2. Отраженный сигнал придёт промодулированным линейно в момент времени, предшествующий настоящему на время задержки. Т.о. частота отраженного сигнала, принятого на РЛС, будет пропорционально зависеть от времени. Время запаздывания определяется по резкой перемене в частоте разностного сигнала.

    Достоинства:

    • позволяет измерять очень малые дальности;
    • используется маломощный передатчик;

    Недостатки:

    • необходимо использование двух антенн;
    • ухудшение чувствительности приёмника вследствие просачивания через антенну в приемный тракт излучения передатчика, подверженного случайным изменениям;
    • высокие требования к линейности изменения частоты;

    Это основные её недостатки.

    Фазовый метод

    Фазовый (когерентный) метод радиолокации основан на выделении и анализе разности фаз отправленного и отражённого сигналов, которая возникает из-за эффекта Доплера , когда сигнал отражается от движущегося объекта. При этом передающее устройство может работать как непрерывно, так и в импульсном режиме. Основным преимуществом данного метода является то, что он «позволяет наблюдать только движущиеся объекты, а это исключает помехи от неподвижных предметов, расположенных между приёмной аппаратурой и целью или за ней.»

    Так как при этом используются ультракороткие волны, то однозначный диапазон измерения дальности составляет порядка единиц метра. Поэтому на практике используют более сложные схемы, в которых присутствует две и больше частот.

    Достоинства:

    • маломощное излучение, так как генерируются незатухающие колебания;
    • точность не зависит от доплеровского сдвига частоты отражения;
    • достаточно простое устройство;

    Недостатки:

    • отсутствие разрешения по дальности;
    • ухудшение чувствительности приёмника вследствие проникновения через антенну в приёмный тракт излучения передатчика, подверженного случайным изменениям;

    Импульсный метод

    Современные радары сопровождения построены как импульсные радары. Импульсный радар передаёт излучающий сигнал только в течение очень краткого времени, коротким импульсом (обычно приблизительно микросекунда), после чего переходит в режим приёма и слушает эхо, отражённое от цели, в то время как излучённый импульс распространяется в пространстве.

    Поскольку импульс уходит далеко от радара с постоянной скоростью, время, прошедшее с момента посылки импульса и до момента получения эхо-ответа, - есть прямая зависимость расстояния до цели. Следующий импульс можно послать только через некоторое время, а именно после того как импульс придёт обратно (это зависит от дальности обнаружения радара, мощности передатчика, усиления антенны, чувствительности приёмника). Если импульс посылать раньше, то эхо предыдущего импульса от отдалённой цели может быть спутано с эхом второго импульса от близкой цели.
    Промежуток времени между импульсами называют интервалом повторения импульса , обратная к нему величина - важный параметр, который называют частотой повторения импульса (ЧПИ) . Радары низкой частоты дальнего обзора, обычно имеют интервал повторения в несколько сотен импульсов в секунду. Частота повторения импульсов является одним из отличительных признаков, по которым возможно дистанционное определение модели РЛС.

    Достоинства импульсного метода измерения дальности:

    • возможность построения РЛС с одной антенной;
    • простота индикаторного устройства;
    • удобство измерения дальности нескольких целей;
    • простота излучаемых импульсов, длящихся очень малое время , и принимаемых сигналов;

    Недостатки:

    • Необходимость использования больших импульсных мощностей передатчика;
    • невозможность измерения малых дальностей;
    • большая мертвая зона;

    Устранение пассивных помех

    Одной из основных проблем импульсных РЛС является избавление от сигнала, отражающегося от неподвижных объектов: земной поверхности, высоких холмов и т. п. Если к примеру, самолёт находится на фоне высокого холма, отражённый сигнал от этого холма полностью перекроет сигнал от самолёта. Для наземных РЛС эта проблема проявляется при работе с низколетящими объектами. Для бортовых импульсных РЛС она выражается в том, что отражение от земной поверхности затеняет все объекты, лежащие ниже самолёта с радиолокатором.

    Методы устранения помех используют, так или иначе, эффект Доплера (частота волны, отражённой от приближающегося объекта, увеличивается, от уходящего объекта - уменьшается).

    Самый простой радар, который может обнаружить цель в помехах - радар с селекцией движущихся целей (СДЦ) - импульсный радар, который сравнивает отражения более чем от двух или больше интервалов повторения импульса. Любая цель, которая, движется относительно радара, производит изменение в параметре сигнала (стадия в последовательном СДЦ), тогда как помехи остаются неизменными. Устранение помех происходит путём вычитания отражений из двух последовательных интервалов. На практике устранение помех может быть осуществлено в специальных устройствах - черезпериодных компенсаторах или алгоритмами в программном обеспечении.

    СДЦ, работающие с постоянной частотой повторения импульсов, имеют фундаментальную слабость: они являются слепыми к целям со специфическими круговыми скоростями (которые производят изменения фаз точно в 360 градусов), и такие цели не отображаются. Скорость, при которой цель исчезает для радиолокатора, зависит от рабочей частоты станции и от частоты повторения импульсов. Современные СДЦ излучают несколько импульсов с различной частоты повторения - такой, что невидимые скорости в каждой частоте повторения импульсов охвачены другими ЧПИ.

    Другой способ избавления от помех реализован в импульсно-доплеровских РЛС , которые используют существенно более сложную обработку чем РЛС с СДЦ.

    Важное свойство импульсно-доплеровских РЛС - это когерентность сигнала. Это значит, что посланные сигналы и отражения должны иметь определённую фазовую зависимость.

    Импульсно-доплеровские РЛС обычно считаются лучше РЛС с СДЦ при обнаружении низколетящих целей во множественных помехах земли, это - предпочтительная техника, используемая в современном истребителе, для воздушного перехвата/управления огнём (примеры тому AN/APG-63, 65, 66, 67 и 70 радары). В современном доплеровском радаре большинство обработки выполняется отдельным процессором в цифровом виде с помощью цифровых сигнальных процессоров , обычно используя высокопроизводительный алгоритм Быстрое преобразование Фурье для преобразования цифровых данных образцов отражений кое во что более управляемое другими алгоритмами. Цифровые обработчики сигналов очень гибки, поскольку используемые в них алгоритмы могут оперативно заменяться другими, изменением только программы в памяти устройства («прошивку » ПЗУ), таким образом, в случае необходимости, быстро приспосабливаясь к технике глушения противника.

    Диапазоны РЛС

    Частотные диапазоны РЛС американского стандарта IEEE
    Диапазон Этимология Частоты Длина волны Примечания
    HF англ. high frequency 3-30 МГц 10-100 м Радары береговой охраны, «загоризонтные» РЛС
    P англ. previous < 300 МГц > 1 м Использовался в первых радарах
    VHF англ. very high frequency 50-330 МГц 0,9-6 м Обнаружение на больших дальностях, исследования Земли
    UHF англ. ultra high frequency 300-1000 МГц 0,3-1 м Обнаружение на больших дальностях (например, артиллерийского обстрела), исследования лесов, поверхности Земли
    L англ. Long 1-2 ГГц 15-30 см наблюдение и контроль за воздушным движением
    S англ. Short 2-4 ГГц 7,5-15 см управление воздушным движением, метеорология, морские радары
    C англ. Compromise 4-8 ГГц 3,75-7,5 см метеорология, спутниковое вещание, промежуточный диапазон между X и S
    X 8-12 ГГц 2,5-3,75 см управление оружием, наведение ракет, морские радары, погода, картографирование среднего разрешения; в США диапазон 10,525 ГГц ± 25 МГц используется в РЛС аэропортов
    K u англ. under K 12-18 ГГц 1,67-2,5 см картографирование высокого разрешения, спутниковая альтиметрия
    K нем. kurz - «короткий» 18-27 ГГц 1,11-1,67 см использование ограничено из-за сильного поглощения водяным паром, поэтому используются диапазоны K u и K a . Диапазон K используется для обнаружения облаков, в полицейских дорожных радарах (24,150 ± 0,100 ГГц).
    K a англ. above K 27-40 ГГц 0,75-1,11 см Картографирование, управление воздушным движением на коротких дистанциях, специальные радары, управляющие дорожными фотокамерами (34,300 ± 0,100 ГГц)
    mm 40-300 ГГц 1-7,5 мм миллиметровые волны, делятся на два следующих диапазона
    V 40-75 ГГц 4,0-7,5 мм медицинские аппараты КВЧ , применяемые для физиотерапии
    W 75-110 ГГц 2,7-4,0 мм сенсоры в экспериментальных автоматических транспортных средствах, высокоточные исследования погодных явлений

    Вторичная радиолокация

    «Вторичная радиолокация» используется в авиации для опознавания самолетов. Основная особенность - использование активного ответчика на самолётах.

    Принцип действия вторичного радиолокатора несколько отличается, от принципа Первичной радиолокации. В основе устройства Вторичной радиолокационной станции лежат компоненты: передатчик , антенна , генераторы азимутальных меток, приёмник , сигнальный процессор , индикатор и самолётный ответчик с антенной .

    Передатчик - служит для излучения импульсов запроса в антенну на частоте 1030 МГц

    Антенна - служит для излучения и приёма отражённого сигнала. По стандартам ICAO для вторичной радиолокации антенна излучает на частоте 1030МГц и принимает на частоте 1090 МГц.

    Генераторы азимутальных меток - служат для генерации азимутальных меток (Azimuth Change Pulse или ACP) и генерации метки Севера (Azimuth Reference Pulse или ARP ). За один оборот антенны РЛС генерируется 4096 малых азимутальных меток(для старых систем) или 16384 малых азимутальных меток (для новых систем, их ещё называет улучшенные малые азимутальные метки (Improved Azimuth Change pulse или IACP), а также одну метку Севера. Метка севера приходит с генератора азимутальных меток при таком положении антенны, когда она направлена на Север, а малые азимутальные метки служат для отсчёта угла разворота антенны.

    Приёмник - служит для приёма импульсов на частоте 1090 МГц.

    Сигнальный процессор - служит для обработки принятых сигналов.

    Индикатор - служит для индикации обработанной информации.

    Самолётный ответчик с антенной - служит для передачи импульсного радиосигнала, содержащего дополнительную информацию, обратно в сторону РЛС при получении радиосигнала запроса.

    Принцип действия вторичного радиолокатора заключается в использовании энергии самолётного ответчика для определения положения воздушного судна. РЛС облучает окружающее пространства запросными импульсами на частоте P1 и P3, а также импульсом подавления P2 на частоте 1030 МГц. Оборудованные ответчиками воздушные суда, находящиеся в зоне действия луча запроса, при получении запросных импульсов, если действует условие P1,P3>P2 отвечают запросившей РЛС, серией кодированных импульсов на частоте 1090 МГц, в которых содержится дополнительная информация о номере борта, высоте и так далее. Ответ самолётного ответчика зависит от режима запроса РЛС, а режим запроса определяется интервалом времени между запросными импульсами P1 и P3, например, в режиме запроса А (mode A) интервал времени между запросными импульсами станции P1 и P3 равен 8 микросекундам и при получении такого запроса ответчик воздушного судна кодирует в импульсах ответа свой номер борта.

    В режиме запроса C (mode C) интервал времени между запросными импульсами станции равен 21 микросекунде и при получении такого запроса ответчик воздушного судна кодирует в импульсах ответа свою высоту. Также РЛС может посылать запрос в смешанном режиме, например Режим А, Режим С, Режим А, Режим С. Азимут воздушного судна определяется углом поворота антенны, который в свою очередь определяется путём подсчёта малых азимутальных меток .

    Дальность определяется по задержке пришедшего ответа. Если воздушное судно находится в зоне действия боковых лепестков, а не основного луча, или находится сзади антенны, то ответчик воздушного судна при получении запроса от РЛС получит на своём входе условие, что импульсы P1,P3

    Принятый от ответчика сигнал обрабатывается приёмником РЛС, затем поступает на сигнальный процессор, который проводит обработку сигналов и выдачу информации конечному потребителю и (или) на контрольный индикатор.

    Плюсы вторичной РЛС:

    • более высокая точность;
    • дополнительная информация о воздушном судне (номер борта, высота);
    • малая по сравнению с первичными РЛС мощность излучения;
    • большая дальность обнаружения.

    См. также

    • Нижегородский НИИ радиотехники

    Литература

    • Поляков В. Т. «Посвящение в радиоэлектронику», М., РиС, ISBN 5-256-00077-2
    • Леонов А. И. Радиолокация в противоракетной обороне. М., 1967
    • Радиолокационные станции бокового обзора, под ред. А. П. Реутова, М., 1970
    • Мищенко Ю. А. Загоризонтная радиолокация, М., 1972
    • Бартон Д. Радиолокационные системы / Сокращенный перевод с английского под редакцией Трофимова К. Н.. - М .. - Военное издательство, 1967. - 480 с.
    • Лобанов М. М. Развитие советской радиолокации
    Статьи
    • Шембель Б. К. У истоков радиолокации в СССР. - Советское радио, 1977, № 5
    • Ю. Б. Кобзарев. Первые шаги советской радиолокации. Журнал «Природа», № 12, 1985 г.

    Ссылки

    • (нем.) Технология Радиолокационная станция
    • Раздел о радиолокационных станциях в блоге dxdt.ru (рус.)
    • http://www.net-lib.info/11/4/537.php Константин Рыжов - 100 великих изобретений. 1933 г. - Тейлор, Юнг и Хайланд выдвигают идею радара. 1935 г. - Радиолокационная станция CH дальнего обнаружения Уотсона-Уатта.
    • РЛС Лена-М РЛС Лена-М - фото, описание

    Примечания

    Принцип работы импульсной РЛС можно уяснить, рассмотрев «Упрощенную структурную схему импульсной РЛС (рис. 3.1, слайд 20, 25 ) и графики, поясняющие работу импульсного радиолокатора (рис. 3.2, слайд 21, 26 ).

    Работу импульсной РЛС лучше всего начать рассматривать с блока синхронизации (блока запуска) станции. Этот блок задает «ритм» работы станции: он задает частоту повторения зондирующих сигналов, синхронизирует работу индикаторного устройства с работой передатчика станции. Синхронизатор вырабатывает кратковременные остроконечные импульсы И зап с определенной частотой повторения Т п . Конструктивно синхронизатор может быть выполнен в виде отдельного блока или представлять единое целое с модулятором станции.

    Модулятор управляет работой генератора СВЧ, включает и выключает его. Модулятор запускается импульсами синхронизатора и формирует мощные прямоугольные импульсы необходимой амплитуды U м и длительности τ и . Генератор СВЧ включается в работу только при наличии импульсов модулятора. Частота включения генератора СВЧ, а, следовательно, и частота повторения зондирующих импульсов определяется частотой импульсов синхронизатора Т п . Продолжительность работы генератора СВЧ при каждом его включении (то есть длительность зондирующего импульса) зависит от длительности формирующего в модуляторе импульса τ и . Длительность импульса модулятора τ и обычно составляет единицы микросекунд, а паузы между ними – сотни и тысячи микросекунды.

    Под действием напряжения модулятора генератор СВЧ формирует мощные радиоимпульсы U ген , длительность и форма которых определяется длительностью и формой импульсов модулятора. Колебания высокой частоты, то есть зондирующие импульсы от генератора СВЧ, поступают через антенный переключатель в антенну. Частота колебаний радиоимпульсов определяется параметрами генератора СВЧ.

    Антенный переключатель (АП) обеспечивает возможность работы передатчика и приемника на одну общую антенну. На время генерации зондирующего импульса (мкс) он подключает антенну к выходу передатчика и блокирует вход приемника, а на нее остальное время (время паузы – сотни, тысячи мкс) подключает антенну к входу приемника и отключает ее от передатчика. В импульсный РЛС в качестве антенных переключателей применяются автоматические быстродействующие переключатели.

    Антенна преобразует колебания СВЧ в электромагнитную энергию (радиоволны) и фокусирует ее в узкий пучок. Отраженные от цели сигналы принимаются антенной, проходят через антенный переключатель и поступают на вход приемника U с , где они селектируются, усиливаются, детектируются и через аппаратуру защиты от помех подаются на индикаторные устройства.

    Аппаратура защиты от помех включается только при наличии в зоне действия РЛС пассивных и активных помех. Подробно эта аппаратура будет изучаться в теме 7.

    Индикаторное устройство является оконечным устройством РЛС и служит для отображения и съема радиолокационной информации. Электрическая схема и конструкция индикаторных устройств определяется практическим назначением станции и могут быть весьма различными. Например , для РЛС обнаружения с помощью индикаторных устройств должна воспроизводиться воздушная обстановка и определяться координаты целей Д и β. Эти индикаторы называются индикаторами кругового обзора (ИКО). В РЛС измерения высоты полета цели (высотомерах) используются индикаторы высоты. Индикаторы дальности измеряют только дальность до цели и используются для контроля.

    Для точного определения дальности необходимо измерять интервал времени t з (десятки и сотни мкс) с высокой точностью, то есть требуются приборы с весьма малой инерционностью. Поэтому в индикаторах дальности в качестве измерительных приборов используются электронно-лучевые трубки (ЭЛТ).

    Примечание. Принцип измерения дальности был изучен в занятии 1, поэтому при изучении этого вопроса основное внимание уделить формированию развертки на ИКО.

    Сущность измерения дальности (время запаздывания t з ) с помощью ЭЛТ можно пояснить на примере использования линейной развертки в трубке с электростатическим управлением электронным лучом.

    При линейной развертке в ЭЛТ электронный луч под действием напряжения развертки U р периодически перемещается с постоянной скоростью по прямой слева направо (рис. 1.7,слайд 9, 12 ). Напряжение развертки вырабатывается специальным генератором развертки, который запускается тем же импульсом синхронизатора, что и модулятор передатчика. Поэтому движение луча по экрану начинается каждый раз в момент посылки зондирующего импульса.

    При использовании амплитудной отметки цели отраженный сигнал, поступающий с выхода приемника, вызывает отклонение луча в перпендикулярном направлении. Таким образом, отраженный сигнал можно видеть на экране трубки. Чем дальше находится цель, тем больше времени проходит до момента появления отраженного импульса и дальше вправо успевает переместиться луч вдоль линии развертки. Очевидно, каждой точке линии развертки соответствует определенный момент прихода отраженного сигнала и, следовательно, определенное значение дальности.

    В РЛС, работающих в режиме кругового обзора, используются индикаторы кругового обзора (ИКО) и ЭЛТ с электромагнитным отклонением луча и яркостной отметкой. Антенна РЛС с узконаправленным лучом (ДН) перемещается механизмом вращения антенны в горизонтальной плоскости и «просматривает» окружающее пространство (рис. 3.3, слайд,

    На ИКО линия развертки дальности вращается по азимуту синхронно с антенной, а начало движения электронного луча от центра трубки в радиальном направлении совпадает с моментом излучения зондирующего импульса. Синхронное вращение развертки на ИКО с антенной РЛС осуществляется при помощи силового синхронного привода (ССП). Ответные сигналы высвечиваются на экране индикатора в виде яркостной отметки.

    ИКО позволяет одновременно определять дальность Д и азимут β цели. Для удобства отсчета на экране ИКО электронным способом наносятся масштабные отметки дальности, имеющие вид окружностей и масштабные отметки азимута в виде ярких радиальных линий (рис. 3.3, слайд, 8, 27 ).

    Примечание. Используя телевизионную установку и карточку ТВ предложить студентам определить координаты целей. Указать масштаб индикатора: отметки дальности следуют через 10 км, отметки азимута – через 10 градусов.

    В Ы В О Д

    (слайд 28)

      Определение дальности до объекта при импульсном методе сводится к измерению времени запаздывания t з отраженного сигнала относительно зондирующего импульса. Момент излучения зондирующего импульса берется за начало отсчета времени распространения радиоволн.

      Достоинства импульсных РЛС:

      удобство визуального наблюдения одновременно всех целей, облучаемых антенной в виде отметок на экране индикаторов;

      поочередная работа передатчика и приемника позволяет использовать одну общую антенну для передачи и приема.

    Второй учебный вопрос.

    Основные показатели импульсного метода

    Основными показателями импульсного метода являются (слайд 29) :

    Однозначно определяемая максимальная дальность, Д ;

      разрешающая способность по дальности, δД ;

      минимальная определяемая дальность, Д min .

    Рассмотрим эти показатели.

        Однозначно определяемая максимальная дальность

    Максимальная дальность действия РЛС определяется основной формулой радиолокации и зависит от параметров РЛС.

    Однозначность определения дальности до объекта зависит от периода следования зондирующих импульсов Т п . Далее этот вопрос изложить следующим образом.

    Максимальная дальность действия РЛС равна 300 км. Определить время задержки до цели, находящейся на этой дальности

    Период повторения зондирующих импульсов выбран равным 1000 мкс. Определить дальность до цели, время задержки до которой равно Т п

    В воздушном пространстве находятся две цели: цель № 1 на дальности 100 км и цель № 2 на дальности 200 км. Как будут выглядеть отметки от этих целей на индикаторе РЛС (рис. 3.4, слайд 22, 30 ).

    При зондировании пространства импульсами с периодом повторения 1000 мкс отметка от цели № 1 будет высвечиваться на дальности 50 км, так как после дальности 150 км начнется новый период развертки и дальняя цель даст отметку в начале шкалы (на дистанции 50 км). Отсчитанная дальность не соответствует реальной.

    Как исключить неоднозначность в определении дальности?

    После обобщения ответов студентов сделать вывод:

    Для однозначного определения дальности необходимо период повторения зондирующих импульсов выбирать в соответствии с заданной максимальной дальностью действия РЛС, то есть

    Для заданной дальности 300 км период повторения зондирующих импульсов должен быть больше 2000 мкс или частота повторения должна быть меньше 500 Гц.

    Кроме того, максимально определяемая дальность зависит от ширины ДНА, скорости вращения антенны и необходимого числа импульсов, отраженных от цели за один оборот антенны.

    Разрешающей способностью по дальности (δД) называется то минимальное расстояние между двумя целями, находящимися на одном азимуте и угле места, при котором отраженные от них сигналы наблюдаются на экране индикатора еще раздельно (рис. 3.5, слайд 23, 31, 32 ).

    При заданной длительности зондирующего импульса τ и и расстоянии между целями ∆Д 1 цели № 1 и № 2 облучаются раздельно. При той же длительности импульса, но при расстоянии между целями ∆Д 2 цели № 3 и № 4 облучаются одновременно. Следовательно, в первом случае на экране ИКО будут видны раздельно, а во втором – слитно. Отсюда вытекает, что для раздельного приема импульсных сигналов необходимо, чтобы интервал времени между моментами их приема был больше длительности импульса τ и (∆ t > τ и )

    Минимальная разность (Д 2 – Д 1 ), при которой цели видны на экране раздельно, по определению есть разрешающая способность по дальности δД, следовательно

    Помимо длительности импульса τ и на разрешающую способность станции по дальности оказывает влияние разрешающая способность индикатора, определяемая масштабом развертки и минимальным диаметром светящегося пятна на экране ЭЛТ (d п 1 мм). Чем крупнее масштаб развертки дальности и лучше фокусировка луча ЭЛТ, тем лучше разрешающая способность индикатора.

    В общем случае разрешающая способность РЛС по дальности равна

    где δД и – разрешающая способность индикатора.

    Чем меньше δД , тем лучше разрешающая способность. Обычно разрешающая способность РЛС по дальности имеет величину δД = (0,5...5) км.

    В отличие от разрешающей способности по дальности разрешающая способность по угловым координатам (по азимуту δβ и углу места δε ) не зависит от метода радиолокации и определяется шириной диаграммы направленности антенны в соответствующей плоскости, которую принято отсчитывать по уровню половинной мощности.

    Разрешающая способность РЛС по азимуту δβ о равна:

    δβ о = φ 0,5р о + δβ и о ,

    где φ 0,5р о – ширина диаграммы направленности по половинной мощности в горизонтальной плоскости;

    δβ и о - разрешающая способность по азимуту индикаторной аппаратуры.

    Высокие разрешающие способности РЛС позволяют раздельно наблюдать и определять координаты близко расположенных целей.

    Минимальная определяемая дальность – это наименьшее расстояние, на котором станция еще может обнаруживать цель. Иногда пространства вокруг станции, в котором цели не обнаруживаются, называют «мертвой» зоной (слайд 33 ).

    Использование в импульсной РЛС одной антенны для передачи зондирующих импульсов и приема отраженных сигналов требует отключения приемника на время излучения зондирующего импульса τ u . Поэтому отраженные сигналы, приходящие к станции в момент, когда ее приемник не подключен к антенне, не будут приняты и зарегистрированы на индикаторах. Продолжительность времени, в течение которого приемник не может принимать отраженные сигналы, определяется длительностью зондирующего импульса τ u и временем, необходимым для переключения антенны с передачи на прием после воздействия на него зондирующего импульса передатчика t в .

    Зная это время, значение минимальной дальности Д min импульсной РЛС можно определить по формуле

    где τ u - длительность зондирующего импульса РЛС;

    t в - время включения приемника после окончания зондирующего импульса передатчика (единицы – мкс).

    Например . При τ u = 10мкс Д min = 1500 м

    при τ u = 1 мкс Д min = 150 м.

    Следует иметь ввиду, что к увеличению радиуса «мертвой» зоны Д min приводит наличие на экране индикатора отраженный от местных предметов и ограниченность пределов поворота антенны по углу места.

    В Ы В О Д

    Импульсный метод радиолокации эффективен при измерении дальностей объектов, находящихся на больших расстояниях.

    Третий учебный вопрос

    Метод непрерывного излучения

    Наряду с использованием импульсного метода радиолокации можно осуществить с помощью установок с непрерывным излучением энергии. При непрерывном методе излучения представляется возможность посылать большую энергию в направлении на цель.

    Наряду с преимуществом энергетического порядка метод непрерывного излучения по ряду показателей уступает импульсному методу. В зависимости от того, какой параметр отраженного сигнала служат основой для измерения дальности до цели, при непрерывном методе радиолокации различают:

      фазовый (фазометрический) метод радиолокации;

      частотный метод радиолокации.

    Возможны также комбинированные методы радиолокации, в частности, импульсно-фазовый и импульсно-частотный.

    При фазовом методе радиолокации о расстоянии до цели до цели судят по разности фаз излучаемых и принимаемых отраженных колебаний. Первые фазометрические методы измерения расстояния были предложены и разработаны академиками Л.И.Мандельштамом и Н.Д.Папалекси. Эти методы нашли применение в длинноволновых авиационных радионавигационных системах большого радиуса действия.

    При частотном методе радиолокации о расстоянии до цели судят по частоте биений между прямым и отраженным сигналами.

    Примечание. Изучение этих методов студенты проводят самостоятельно. Литература: Слуцкий В.З. Импульсная техника и основы радиолокации. С. 227-236.

    В Ы В О Д

      Определение дальности до объекта при импульсном методе сводится к изменению времени запаздывания t зап отраженного сигнала относительно зондирующего импульса.

      Для однозначности определения дальности до объекта необходимо, чтобы t зап.мах ≤ Т п.

      Разрешающая способность по дальности δД тем лучше, чем меньше длительность зондирующего импульса τ u .

    Радиолокационная станция (РЛС) или рада́р (англ. radar от Radio Detection and Ranging - радиообнаружение и дальнометрия) - система для обнаружения воздушных, морских и наземных объектов, а также для определения их дальности и геометрических параметров. Использует метод, основанный на излучении радиоволн и регистрации их отражений от объектов. Английский термин-акроним появился в г., впоследствии в его написании прописные буквы были заменены строчными.

    История

    3 января 1934 года в СССР был успешно проведён эксперимент по обнаружению самолёта радиолокационным методом. Самолёт, летящий на высоте 150 метров был обнаружен на дальности 600 метров от радарной установки. Эксперимент был организован представителями Ленинградского Института Электротехники и Центральной Радиолаборатории. В 1934 году маршал Тухачевский в письме правительству СССР написал: «Опыты по обнаружению самолётов с помощью электромагнитного луча подтвердили правильность положенного в основу принципа». Первая опытная установка «Рапид» была опробована в том же же году , в 1936 году советская сантиметровая радиолокационная станция «Буря» засекала самолёт с расстояния 10 километров . В США первый контракт военных с промышленностью был заключён в 1939 году. В 1946 году американские специалисты - Реймонд и Хачертон, бывший сотрудник посольства США в Москве, написали: «Советские учёные успешно разработали теорию радара за несколько лет до того, как радар был изобретён в Англии».

    Классификация радаров

    По предназначению радиолокационные станции можно классифицировать следующим образом:

    • РЛС обнаружения;
    • РЛС управления и слежения;
    • Панорамные РЛС;
    • РЛС бокового обзора;
    • Метеорологические РЛС.

    По сфере применения различают военные и гражданские РЛС.

    По характеру носителя:

    • Наземные РЛС
    • Морские РЛС
    • Бортовые РЛС

    По типу действия

    • Первичные или пассивные
    • Вторичные или активные
    • Совмещённые

    По диапазону волн:

    • Метровые
    • Сантиметровые
    • Миллиметровые

    Устройство и принцип действия Первичного радиолокатора

    Первичный (пассивный) радиолокатор, в основном, служит для обнаружения целей, освещая их электромагнитной волной и затем принимая отражения (эхо) этой волны от цели. Поскольку скорость электромагнитных волн постоянна (скорость света), становится возможным определить расстояние до цели, основываясь на измерении времени распространения сигнала.

    В основе устройства радиолокационной станции лежат три компонента: передатчик , антенна и приёмник .

    Передающее устройство является источником электромагнитного сигнала высокой мощности. Он может представлять из себя мощный импульсный генератор. Для импульсных РЛС сантиметрового диапазона - обычно магнетрон или импульсный генератор работающий по схеме: задающий генератор - мощный усилитель, использующий в качестве генератора чаще всего лампу бегущей волны , а для РЛС метрового диапазона, часто используют - триодную лампу. В зависимости от конструкции, передатчик работает либо в импульсном режиме, формируя повторяющиеся короткие мощные электромагнитные импульсы, либо излучает непрерывный электромагнитный сигнал.

    Антенна выполняет фокусировку сигнала приёмника и формирование диаграммы направленности , а также приём отражённого от цели сигнала и передачу этого сигнала в приёмник. В зависимости от реализации приём отражённого сигнала может осуществляться либо той же самой антенной, либо другой, которая иногда может располагаться на значительном расстоянии от передающего устройства. В случае, если передача и приём совмещены в одной антенне, эти два действия выполняются поочерёдно, а чтобы мощный сигнал, просачивающийся от передающего передатчика в приёмник не ослепил приёмник слабого эха, перед приёмником размещают специальное устройство, закрывающее вход приёмника в момент излучения зондирующего сигнала.

    Приёмное устройство выполняет усиление и обработку принятого сигнала. В самом простом случае результирующий сигнал подаётся на лучевую трубку (экран), которая показывает изображение, синхронизированное с движением антенны.

    Когерентные РЛС

    Когерентный метод радиолокации основан на выделении и анализе разности фаз отправленного и отражённого сигналов, которая возникает из-за эффекта Доплера , когда сигнал отражается от движущегося объекта. При этом передающее устройство может работать как непрерывно, так и в импульсном режиме. Основным преимуществом данного метода является то, что он «позволяет наблюдать только движущиеся объекты, а это исключает помехи от неподвижных предметов, расположенных между приёмной аппаратурой и целью или за ней.»

    Импульсные РЛС

    Принцип действия импульсного радара

    Принцип определения расстояния до объекта с помощью импульсного радара

    Современные радары сопровождения построены как импульсные радары. Импульсный радар передаёт только в течение очень краткого времени, короткий импульс обычно приблизительно микросекунда в продолжительности, после чего он слушает эхо, в то время как импульс распространяется.

    Поскольку импульс уходит далеко от радара с постоянной скоростью, время прошедшее с момента, когда импульс посылали, ко времени когда эхо получено, - ясная мера прямого расстояния до цели. Следующий импульс можно послать только через некоторое время, а именно после того как импульс придёт обратно, это зависит от дальности обнаружения радара (данным мощностью передатчика, усилением антенны и чувствительностью приёмника). Если бы импульс посылали раньше, то эхо предыдущего импульса от отдалённой цели могло бы быть перепутано с эхом второго импульса от близкой цели.

    Промежуток времени между импульсами называют интервалом повторения импульса , обратная к нему величина - важный параметр, который называют частотой повторения импульса (ЧПИ) . Радары низкой частоты дальнего обзора, обычно имеют интервал повторения в несколько сотен импульсов в секунду (или Герц [Гц]). Частота повторения импульсов является одним из отличительных признаков, по которым возможно дистанционное определение модели РЛС.

    Устранение пассивных помех

    Одной из основных проблем импульсных РЛС является избавление от сигнала, отражающегося от неподвижных объектов: земной поверхности, высоких холмов и т. п. Если к примеру, самолёт находится на фоне высокого холма, отражённый сигнал от этого холма полностью перекроет сигнал от самолёта. Для наземных РЛС эта проблема проявляется при работе с низколетящими объектами. Для бортовых импульсных РЛС она выражается в том, что отражение от земной поверхности затеняет все объекты, лежащие ниже самолёта с радиолокатором.

    Методы устранения помех используют, так или иначе, эффект Доплера (частота волны, отражённой от приближающегося объекта, увеличивается, от уходящего объекта - уменьшается).

    Самый простой радар, который может обнаружить цель в помехах - радар с селекцией движущихся целей (СДЦ) - импульсный радар, который сравнивает отражения более чем от двух или больше интервалов повторения импульса. Любая цель, которая, движется относительно радара, производит изменение в параметре сигнала (стадия в последовательном СДЦ), тогда как помехи остаются неизменными. Устранение помех происходит путём вычитания отражений из двух последовательных интервалов. На практике устранение помех может быть осуществлено в специальных устройствах - черезпериодных компенсаторах или алгоритмами в программном обеспечении.

    СДЦ, работающие с постоянной частотой повторения импульсов, имеют фундаментальную слабость: они являются слепыми к целям со специфическими круговыми скоростями (которые производят изменения фаз точно в 360 градусов), и такие цели не отображаются. Скорость, при которой цель исчезает для радиолокатора, зависит от рабочей частоты станции и от частоты повторения импульсов. Современные СДЦ излучают несколько импульсов с различной частоты повторения - такой, что невидимые скорости в каждой частоте повторения импульсов охвачены другими ЧПИ.

    Другой способ избавления от помех реализован в импульсно-доплеровских РЛС , которые используют существенно более сложную обработку чем РЛС с СДЦ.

    Важное свойство импульсно-доплеровских РЛС - это когерентность сигнала. Это значит, что посланные сигналы и отражения должны иметь определённую фазовую зависимость.

    Импульсно-доплеровские РЛС обычно считаются лучше РЛС с СДЦ при обнаружении низколетящих целей во множественных помехах земли, это - предпочтительная техника, используемая в современном истребителе, для воздушного перехвата/управления огнём, примеры тому AN/APG-63, 65, 66, 67 и 70 радары. В современном доплеровском радаре большинство обработки выполняется отдельным процессором в цифровом виде с помощью цифровых сигнальных процессоров , обычно используя высокопроизводительный алгоритм Быстрое преобразование Фурье для преобразования цифровых данных образцов отражений кое во что более управляемое другими алгоритмами. Цифровые обработчики сигналов очень гибки и используемые алгоритмы могут обычно быстро заменяться другими, заменяя только память (ПЗУ) чипы, таким образом быстро противодействуя техники глушения противника если необходимо.

    Устройство и принцип действия Вторичного радиолокатора

    Принцип действия вторичного радиолокатора несколько отличается, от принципа Первичной радиолокации. В основе устройства Вторичной радиолокационной станции лежат компоненты: передатчик , антенна , генераторы азимутальных меток, приёмник , сигнальный процессор , индикатор и самолётный ответчик с антенной .

    Передатчик . Служит для излучения импульсов запроса в антенну на частоте 1030 МГц

    Антенна . Служит для излучения и приёма отражённого сигнала. По стандартам ICAO для вторичной радиолокации, антенна излучает на частоте 1030МГц, и принимает на частоте 1090 МГц.

    Генераторы Азимутальных меток . Служат для генерации Азимутальных меток (Azimuth Change Pulse или ACP) и генерации Метки Севера (Azimuth Reference Pulse или ARP). За один оборот антенны РЛС генерируется 4096 малых азимутальных меток(для старых систем), или 16384 Малых азимутальных меток (для новых систем), их ещё называет улучшенные малые азимутальные метки (Improved Azimuth Change pulse или IACP), а также одну метку Севера. Метка севера приходит с генератора азимутальных меток, при таком положении антенны, когда она направлена на Север, а малые азимутальные метки служат для отсчёта угла разворота антенны.

    Приёмник . Служит для приёма импульсов на частоте 1090 МГц

    Сигнальный процессор . Служит для обработки принятых сигналов

    Индикатор Служит для индикации обработанной информации

    Самолётный ответчик с антенной Служит для передачи импульсного радиосигнала, содержащего дополнительную информацию, обратно в сторону РЛС при получении радиосигнала запроса.

    Принцип Действия Принцип действия вторичного радиолокатора заключается в использовании энергии самолётного ответчика, для определения положения Воздушного судна. РЛС облучает окружающее пространства запросными импульсами на частоте P1 и P3, а также импульсом подавления P2 на частоте 1030 МГц. Воздушные суда оборудованные ответчиками находящиеся в зоне действия луча запроса при получении запросных импульсов, если действует условие P1,P3>P2 отвечают запросившей РЛС, Серией кодированных импульсов на частоте 1090 МГц, в которых содержится дополнительная информация типа Номер борта, Высота и так далее. Ответ самолётного ответчика зависит от режима запроса РЛС, а режим запроса определяется растоянием между запросными импульсами P1 и P3 например в режиме запроса А (mode A), расстояние между запросными импульсами станции P1 и P3 равно 8 микросекунд, и при получении такого запроса ответчик воздушного судна кодирует в импульсах ответа свой номер борта. В режиме запроса C (mode C) расстояние между запросными импульсами станции равно 21 микросекунде и при получении такого запроса ответчик воздушного судна кодирует в импульсах ответа свою высоту. Также РЛС может посылать запрос в смешанном режиме, например Режим А, Режим С, Режим А, Режим С. Азимут Воздушного судна определяется, углом поворота антенны, который в свою очередь определяется путём подсчёта Малых Азимутальных меток. Дальность определяется, по задержке пришедшего ответа Если Воздушное судно не лежит в зоне действия основного луча, а лежит в зоне действия боковых лепестков, или находится сзади антенны, то ответчик Воздушного судна при получении запроса от РЛС, получит на своём входе условие, что импульсы P1,P3

    Плюсы вторичной РЛС, более высокая точность, дополнительная информация о Воздушном Судне (Номер борта, Высота), а также малое по сравнению с Первичными РЛС излучение.

    Другие страницы

    • (нем.) Технология Радиолокационная станция
    • Раздел о радиолокационных станциях в блоге dxdt.ru (рус.)
    • http://www.net-lib.info/11/4/537.php Константин Рыжов - 100 великих изобретений. 1933 г. - Тейлор, Юнг и Хайланд выдвигают идею радара. 1935 г. - Радиолокационная станция CH дальнего обнаружения Уотсона-Уатта.

    Литература и сноски

    Wikimedia Foundation . 2010 .

    Синонимы :
    • РЛС Дуга
    • РМГ

    Смотреть что такое "РЛС" в других словарях:

      РЛС - Русская логистическая служба http://www.rls.ru/​ РЛС радиолокационная станция связь Словари: Словарь сокращений и аббревиатур армии и спецслужб. Сост. А. А. Щелоков. М.: ООО «Издательство АСТ», ЗАО «Издательский дом Гелеос», 2003. 318 с., С … Словарь сокращений и аббревиатур

    Радиолокационные станции классифицируют по следующим признакам:

    Происхождению радиосигнала, принимаемого при­емником РЛС,- активные РЛС (с активным и пассивным ответом), полуактивные и пассивные РЛС;

    Используемому диапазону радиоволн (РЛС декаметрового, метрового, дециметрового, сантиметрового и миллиметрового диапазонов);

    Виду зондирующего сигнала [РЛС с непрерывным (немодулированным или частотно-модулированным) и им­пульсным (некогерентным, когерентно-импульсным с боль­шой и малой скважностью, с внутриимпульсной частотной или фазовой модуляцией) излучением];

    Числу применяемых каналов излучения и приема сигналов (одноканальные и многоканальные с частотным или пространственным разделением каналов);

    Числу и виду измеряемых координат (одно-, двух- и трехкоординатные);

    Способу измерения, отображения и съема координат объекта;

    Месту установки РЛС (наземные, корабельные, самолетные, спутниковые);

    Функциональному назначению РЛС [от малогаба­ритных переносных РЛС измерения скорости автомобилей до огромных наземных РЛС систем противовоздушной (ПВО) и противоракетной (ПРО) обороны]. Перечислим основные типы наземных, корабельных и самолетных РЛС различного назначения.

    Основные типы наземных РЛС :

    Обнаружения воздушных целей и наведения на них истребителей;

    Управления воздушным движением (обзорные и дис­петчерские);

    Обнаружения и определения координат баллис­тических ракет (БР) и искусственных спутников Земли (ИСЗ);

    Целеуказания станциям управления зенитной артил­лерией и наведения зенитных управляемых ракет (ЗУР);

    Управления зенитной артиллерией и ЗУР;

    Обнаружения минометов;

    Метеорологические;

    Обзора акватории порта;

    Обзора летного поля;

    Обнаружения и определения скорости наземных движущихся объектов.

    Основные типы корабельных РЛС :

    Обеспечения кораблевождения;

    Обнаружения надводных объектов и низколетящих летательных аппаратов, определения их координат;

    Обнаружения и определения координат высоколетя­щих самолетов;

    Управления ЗУР и зенитной артиллерией;

      обнаружения и определения координат БР и ИСЗ.

    Основные типы самолетных РЛС :

    Радиолокационные дальномеры;

    Радиовысотомеры;

    Доплеровские измерители путевой скорости и угла сноса самолета;

    РЛС обнаружения самолетов и предотвращения столкновений;

    Панорамные РЛС обзора земной поверхности;

    РЛС бокового обзора (в том числе и с синтезиро­ванным раскрывом антенны);

    РЛС перехвата и прицеливания;

    РЛС наведения управляемых ракет;

    Радиолокационные взрыватели.

    Приведенная классификация включает далеко не все используемые типы РЛС. Однако и перечисленных типов достаточно для характеристики широты и многообразия применения радиолокационных средств.

    1.6. Тактические характеристики рлс.

    Тактическими называют характеристики системы, требование которым система должна отвечать, чтобы поставленная задача могла быть решена. Эти требования разработчику радиоэлектронной аппаратуры задаются. На основании тактических требований разработчик далее определяет технические характеристики системы в целом и отдельных устройств ее образующих

    К основным тактическим характеристикам РЛС относят:

      Назначение системы ;

      Место установки ;

      Состав измеряемых координат ;

      Зона (область) обзора или рабочая зона системы, заданную сектором обзора (поиска) по измеряемым пара­метрам объекта;

    Зоной обзора называют область пространства, в ко­торой система надежно выполняет функции, соответст­вующие ее назначению. Так, для РЛС обнаружения зоной обзора является область пространства, в которой объек­ты с заданными характеристиками отражения обнаружи­ваются с вероятностью не меньше заданной.

    При работе с зоной обзора задаются следующие параметры: R max , R min , max , min , max , min .

    5) Время обзора (поиска) заданного сектора или скорость обзора; Временем обзора (поиска) называют время, необходи­мое для однократного обзора заданной зоны действия системы. Выбор времени обзора связан с маневренностью наблюдаемых или управляемых объектов, объемом прост­ранства обзора, уровнем сигнала и помех, а также рядом тактических и технических характеристик системы.

      Точность измерения координат ;

    Точность системы характеризуется погрешностями при измерении координат и параметров движения объекта. Причинами погрешностей являются несовершенство при­меняемого метода измерения и аппаратуры, влияние внешних условий и радиопомех, субъективные качества оператора, если процессы получения и реализации инфор­мации не автоматизированы. Требования к точности системы зависят от ее назначения. Неоправданное завыше­ние требований к точности приводит к усложнению системы, снижению ее экономичности, а иногда и надеж­ности функционирования.

    Измерение параметров сигнал всегда сопровождается ошибками:

      Систематическими (появляются при измерении параметров по приборам);

      Случайными (появляются от факторов, не подлежащих учету. Поэтому эти ошибки подчиняются нормальному закону распределения).

    где х – среднеквадратическая ошибка.

    а) Разрешающая способность по дальности – численно характери­зуется минимальным расстоянием между двумя неподвижными це­лями, расположенными в радиальном направлении относительно РЛС, сигналы которых еще фиксируются станцией раздельно. При меньшем расстоянии между целями их раздельное радиолокацион­ное наблюдение становится невозможным.

    Например, мы имеем два объекта 1 и 2. Расстояние между ними соответственно R 1 и R 2 (рис.I.1.6)

    Время запаздывания одного т второго объектов (рис. I.1.7):
    ,
    .

    Расстояние между объектами начало уменьшиться (рис.I.1.8), т.е.

    ;
    ;
    ,

    где с - мера разрешающей способности.

    б) Разрешающая способность по направлению численно характе­ризуется минимальным углом между направлениями на две равно­удаленные относительно РЛС неподвижные цели, при котором их сигналы еще фиксируются раздельно. Часто разрешающая способ­ность оценивается раздельно по азимуту и углу места.

    Т.е.
    и
    (разрешающая способность по направлению равна половине диаграммы направленности антенны).

    в) Разрешающая способность по скорости оценивается минималь­ной разностью скоростей двух целей, не разрешаемых по коорди­натам, при которой их сигналы еще фиксируются раздельно.

      Пропускная способность характеризуется числом объек­тов, обслуживаемых системой одновременно или в единицу времени. Пропускная способность зависит от принципа действия системы и ряда ее тактических и технических параметров и, в частности, рабочей зоны, точности и разрешающей способности.

    Пропускная способность дальномерных систем, осно­ванных на принципе запроса и активного ответа (две линии связи), ограничена ответчиком, в котором для формирования ответного сигнала на каждый запрос необ­ходимо некоторое время. В этом случае пропускную способность характеризуют вероятностью обслуживания заданного числа объектов при заданном периоде повторе­ния запросов каждым из объектов, находящихся в рабочей зоне системы;

    9) Помехозащищенность РЛС - способность на­дежного выполнения заданных функций в условиях воз­действия непреднамеренных и организованных помех. По­мехозащищенность определяется скрытностью работы сис­темы и ее помехоустойчивостью.

    Под скрытностью системы понимают показатель, характеризующий трудность обнаружения ее работы и из­мерения основных параметров излучаемого радиосигнала, а следовательно, и создания специально организованных (прицельных) помех. Скрытность обеспечивается примене­нием остронаправленного излучения, использованием шумоподобный сигналов с низким уровнем мощности, изме­нением основных параметров сигнала во времени.

    Количественной оценкой помехоустойчивости РЛС является отношение сигнала к помехе на входе приемника, при котором погрешность измерения заданного параметра не превосходит допустимой с требуемой вероят­ностью; для РЛС обнаружения при этом должно обеспечи­ваться обнаружение сигнала с заданной р„ 0 при допустимых значениях вероятности ложной тревоги. Требуемая помехо­устойчивость достигается рациональным выбором пара­метров радиосигнала системы, а также характеристик ДНА и устройств приема и обработки сигнала.

    10) Надежность - свойство объекта сохранять во времени в установленных пределах значения параметров, характери­зующих способность выполнения требуемых функций в за­данных режимах и условиях применения, хранения и транс­портировки.

    В зависимости от причин, вызывающих отказы в ра­боте системы, различают следующие разновидности на­дежности:

    Аппаратурную, связанную с состоянием аппаратуры;

    Программную, обусловленную состоянием прог­рамм вычислительных устройств, используемых в системе;

    Функциональную, т. е. надежность выполнения от­дельных функций, возлагаемых на систему, и, в частности, извлечения и обработки информации. В этом смысле помехозащищенность также может быть отнесена к функ­циональной надежности радиосистемы.

    11) Масогобаритные характеристики – задается объем и масса аппаратуры;

    12) Потребляемая мощность .