Войти
Образование в России
  • Решить систему сравнений
  • Мавритания. Общие впечатления. Мавританцы Наука и культура Мавритании
  • Графики линейных функций
  • Сфера, вписанная в цилиндр, конус и усеченный конус
  • Согласные звуки в русском языке П парный
  • Воздействие частот в герцах (Гц) на организм
  • Онлайн калькулятор абсолютной погрешности. Относительная и абсолютная погрешность: понятие, расчет и свойства

    Онлайн калькулятор абсолютной погрешности. Относительная и абсолютная погрешность: понятие, расчет и свойства

    В процессе измерения чего-либо нужно учитывать, что полученный результат еще неконечный. Чтобы более точно высчитать искомую величину, необходимо учитывать погрешность. Высчитать ее достаточно просто.

    Как найти погрешность – вычисление

    Разновидности погрешностей:

    • относительная;
    • абсолютная.

    Что нужно для вычисления:

    • калькулятор;
    • результаты нескольких измерений одной величины.

    Как найти погрешность – последовательность действий

    • Измерьте величину 3 – 5 раз.
    • Сложите все результаты и разделите полученное число на их количество. Данное число является действительным значением.
    • Вычислите абсолютную погрешность путем вычитания полученного в предыдущем действии значения из результатов измерений. Формула: ∆Х = Хисл – Хист. В ходе вычислений можно получить как положительные, так и отрицательные значения. В любом случае берется модуль результата. Если необходимо узнать абсолютную погрешность суммы двух величин, то вычисления проводятся согласно такой формуле: ∆(Х+Y) = ∆Х+∆Y. Она также работает при необходимости расчета погрешности разности двух величин: ∆(Х-Y) = ∆Х+∆Y.
    • Узнайте относительную погрешность для каждого из измерений. В таком случае нужно разделить полученную абсолютную погрешность на действительное значение. Затем умножьте частное на 100%. ε(x)=Δx/x0*100%. Значение можно и не переводить в проценты.
    • Чтобы получить более точное значение погрешности, необходимо найти среднее квадратическое отклонение. Ищется оно достаточно просто: вычислите квадраты всех значений абсолютной погрешности, а затем найдите их сумму. Полученный результат необходимо разделить на число (N-1), в котором N – это число всех измерений. Последним действием станет извлечение корня из полученного результата. После таких вычислений будет получено среднее квадратическое отклонение, которое обычно характеризует погрешность измерений.
    • Для нахождения предельной абсолютной погрешности необходимо найти самое маленькое число, которое по своему значению равно или превышает значение абсолютной погрешности.
    • Предельная относительная погрешность ищется таким же методом, только нужно находить число, которое больше или равно значения относительной погрешности.


    Погрешности измерений возникают по различным причинам и влияют на точность полученного значения. Зная, чему равна погрешность, можно узнать более точное значение проведенного измерения.

    В основе точных естественных наук лежат измерения. При измерениях значения величин выражаются в виде чисел, которые указывают во сколько раз измеренная величина больше или меньше другой величины, значение которой принято за единицу. Полученные в результате измерений числовые значения различных величин могут зависеть друг от друга. Связь между такими величинами выражается в виде формул, которые показывают, как числовые значения одних величин могут быть найдены по числовым значениям других.

    При измерениях неизбежно возникают погрешности. Необходимо владеть методами, применяемыми при обработке результатов, полученных при измерениях. Это позволит научиться получать из совокупности измерений наиболее близкие к истине результаты, вовремя заметить несоответствия и ошибки, разумно организовать сами измерения и правильно оценить точность полученных значений.

    Если измерение заключается в сравнении данной величины с другой, однородной величиной, принятой за единицу, то измерение в этом случае называется прямым.

    Прямые (непосредственные) измерения – это такие измерения, при которых мы получаем численное значение измеряемой величины либо прямым сравнением ее с мерой (эталоном), либо с помощью приборов, градуированных в единицах измеряемой величины.

    Однако далеко не всегда такое сравнение производится непосредственно. В большинстве случаев измеряется не сама интересующая нас величина, а другие величины, связанные с нею теми или иными соотношениями и закономерностями. В этом случае для измерения необходимой величины приходится предварительно измерить несколько других величин, по значению которых вычислением определяется значение искомой величины. Такое измерение называется косвенным.

    Косвенные измерения состоят из непосредственных измерений одной или нескольких величин, связанных с определяемой величиной количественной зависимостью, и вычисления по этим данным определяемой величины.

    В измерениях всегда участвуют измерительные приборы, которые одной величине ставят в соответствие связанную с ней другую, доступную количественной оценке с помощью наших органов чувств. Например, силе тока ставится в соответствие угол отклонения стрелки на шкале с делениями. При этом должны выполняться два основных условия процесса измерения: однозначность и воспроизводимость результата. эти два условия всегда выполняются только приблизительно. Поэтому процесс измерения содержит наряду с нахождением искомой величины и оценку неточности измерения .

    Современный инженер должен уметь оценить погрешность результатов измерений с учетом требуемой надежности. Поэтому большое внимание уделяется обработке результатов измерений. Знакомство с основными методами расчета погрешностей – одна из главных задач лабораторного практикума.

    Почему возникают погрешности?

    Существует много причин для возникновения погрешностей измерений. Перечислим некоторые из них.

    · процессы, происходящие при взаимодействии прибора с объектом измерений, неизбежно изменяют измеряемую величину. Например, измерение размеров детали с помощью штангенциркуля, приводит к сжатию детали, то есть к изменению ее размеров. Иногда влияние прибора на измеряемую величину можно сделать относительно малым, иногда же оно сравнимо или даже превышает саму измеряемую величину.

    · Любой прибор имеет ограниченные возможности однозначного определения измеряемой величины вследствие конструктивной неидеальности. Например, трение между различными деталями в стрелочном блоке амперметра приводит к тому, что изменение тока на некоторую малую, но конечную, величину не вызовет изменения угла отклонения стрелки.

    · Во всех процессах взаимодействия прибора с объектом измерения всегда участвует внешняя среда, параметры которой могут изменяться и, зачастую, непредсказуемым образом. Это ограничивает возможность воспроизводимости условий измерения, а, следовательно, и результата измерения.

    · При визуальном снятии показаний прибора возможна неоднозначность в считывании показаний прибора вследствие ограниченных возможностей нашего глазомера.

    · Большинство величин определяется косвенным образом на основании наших знаний о связи искомой величины с другими величинами, непосредственно измеряемыми приборами. Очевидно, что погрешность косвенного измерения зависит от погрешностей всех прямых измерений. Кроме того, в ошибки косвенного измерения свой вклад вносят и ограниченность наших познаний об измеряемом объекте, и упрощенность математического описания связей между величинами, и игнорирование влияния тех величин, воздействие которых в процессе измерения считается несущественным.

    Классификация погрешностей

    Значение погрешности измерения некоторой величины принято характеризовать:

    1. Абсолютной погрешностью – разностью между найденным на опыте (измеренным) и истинным значением некоторой величины

    . (1)

    Абсолютная погрешность показывает, на сколько мы ошибаемся при измерении некоторой величины Х.

    2. Относительной погрешностью равной отношению абсолютной погрешности к истинному значению измеряемой величины Х

    Относительная погрешность показывает, на какую долю от истинного значения величины Х мы ошибаемся.

    Качество результатов измерений какой-то величины характеризуется относительной погрешностью . Величина может быть выражена в процентах.

    Из формул (1) и (2) следует, что для нахождения абсолютной и относительной погрешностей измерений, нужно знать не только измеренное, но и истинное значение интересующей нас величины. Но если истинное значение известно, то незачем производить измерения. Цель измерений всегда состоит в том, чтобы узнать не известное заранее значение некоторой величины и найти если не ее истинное значение, то хотя бы значение, достаточно мало от него отличающееся. Поэтому формулы (1) и (2), определяющие величину погрешностей на практике не пригодны. При практических измерениях погрешности не вычисляются, а оцениваются. При оценках учитываются условия проведения эксперимента, точность методики, качество приборов и ряд других факторов. Наша задача: научиться строить методику эксперимента и правильно использовать полученные на опыте данные для того, чтобы находить достаточно близкие к истинным значения измеряемых величин, разумно оценивать погрешности измерений.

    Говоря о погрешностях измерений, следует, прежде всего, упомянуть о грубых погрешностях (промахах) , возникающих вследствие недосмотра экспериментатора или неисправности аппаратуры. Грубых ошибок следует избегать. Если установлено, что они произошли, соответствующие измерения нужно отбрасывать.

    Не связанные с грубыми ошибками погрешности опыта делятся на случайные и систематические.

    с лучайные погрешности. Многократно повторяя одни и те же измерения, можно заметить, что довольно часто их результаты не в точности равны друг другу, а «пляшут» вокруг некоторого среднего (рис.1). Погрешности, меняющие величину и знак от опыта к опыту, называют случайными. Случайные погрешности непроизвольно вносятся экспериментатором вследствие несовершенства органов чувств, случайных внешних факторов и т. д. Если погрешность каждого отдельного измерения принципиально непредсказуема, то они случайным образом изменяют значение измеряемой величины. Эти погрешности можно оценить только при помощи статистической обработки многократных измерений искомой величины.

    Систематические погрешности могут быть связаны с ошибками приборов (неправильная шкала, неравномерно растягивающаяся пружина, неравномерный шаг микрометрического винта, не равные плечи весов и т. д.) и с самой постановкой опыта. Они сохраняют свою величину (и знак!) во время эксперимента. В результате систематических погрешностей разбросанные из-за случайных погрешностей результаты опыта колеблются не вокруг истинного, а вокруг некоторого смещенного значения (рис.2). погрешность каждого измерения искомой величины можно предсказать заранее, зная характеристики прибора.



    Расчет погрешностей прямых измерений

    Систематические погрешности . Систематические ошибки закономерным образом изменяют значения измеряемой величины. Наиболее просто поддаются оценке погрешности, вносимые в измерения приборами, если они связаны с конструктивными особенностями самих приборов. Эти погрешности указываются в паспортах к приборам. Погрешности некоторых приборов можно оценить и не обращаясь к паспорту. Для многих электроизмерительных приборов непосредственно на шкале указан их класс точности.

    Класс точности прибора – это отношение абсолютной погрешности прибора к максимальному значению измеряемой величины , которое можно определить с помощью данного прибора (это систематическая относительная погрешность данного прибора, выраженная в процентах от номинала шкалы ).

    .

    Тогда абсолютная погрешность такого прибора определяется соотношением:

    .

    Для электроизмерительных приборов введено 8 классов точности: 0,05; 0,1; 0,5; 1,0; 1,5; 2,0; 2,5; 4.

    Чем ближе измеряемая величина к номиналу, тем более точным будет результат измерения. Максимальная точность (т. е. наименьшая относительная ошибка), которую может обеспечить данный прибор, равна классу точности. Это обстоятельство необходимо учитывать при использовании многошкальных приборов. Шкалу надо выбирать с таким расчетом, чтобы измеряемая величина, оставаясь в пределах шкалы, была как можно ближе к номиналу.

    Если класс точности для прибора не указан, то необходимо руководствоваться следующими правилами:

    · Абсолютная погрешность приборов с нониусом равна точности нониуса.

    · Абсолютная погрешность приборов с фиксированным шагом стрелки равна цене деления.

    · Абсолютная погрешность цифровых приборов равна единице минимального разряда.

    · Для всех остальных приборов абсолютная погрешность принимается равной половине цены деления.

    Случайные погрешности . Эти погрешности имеют статистический характер и описываются теорией вероятности. Установлено, что при очень большом количестве измерений вероятность получить тот или иной результат в каждом отдельном измерении можно определить при помощи нормального распределения Гаусса. При малом числе измерений математическое описание вероятности получения того или иного результата измерения называется распределением Стьюдента (более подробно об этом можно прочитать в пособии «Ошибки измерений физических величин»).

    Как же оценить истинное значение измеряемой величины?

    Пусть при измерении некоторой величины мы получили N результатов: . Среднее арифметическое серии измерений ближе к истинному значению измеряемой величины, чем большинство отдельных измерений. Для получения результата измерения некоторой величины используется следующий алгоритм.

    1). Вычисляется среднее арифметическое серии из N прямых измерений:

    2). Вычисляется абсолютная случайная погрешность каждого измерения – это разность между средним арифметическим серии из N прямых измерений и данным измерением:

    .

    3). Вычисляется средняя квадратичная абсолютная погрешность :

    .

    4). Вычисляется абсолютная случайная погрешность . При небольшом числе измерений абсолютную случайную погрешность можно рассчитать через среднюю квадратичную погрешность и некоторый коэффициент , называемый коэффициентом Стъюдента:

    ,

    Коэффициент Стьюдента зависит от числа измерений N и коэффициента надежности (в таблице 1 отражена зависимость коэффициента Стьюдента от числа измерений при фиксированном значении коэффициента надежности ).

    Коэффициент надежности – это вероятность, с которой истинное значение измеряемой величины попадает в доверительный интервал.

    Доверительный интервал – это числовой интервал, в который с определенной вероятностью попадает истинное значение измеряемой величины.

    Таким образом, коэффициент Стъюдента – это число, на которое нужно умножить среднюю квадратичную погрешность, чтобы при данном числе измерений обеспечить заданную надежность результата.

    Чем большую надежность необходимо обеспечить для данного числа измерений, тем больше коэффициент Стъюдента. С другой стороны, чем больше число измерений, тем меньше коэффициент Стъюдента при данной надежности. В лабораторных работах нашего практикума будем считать надежность заданной и равной 0,9. Числовые значения коэффициентов Стъюдента при этой надежности для разного числа измерений приведены в таблице 1.

    Таблица 1

    Число измерений N

    Коэффициент Стъюдента

    5). Вычисляется полная абсолютная погрешность. При любых измерениях существуют и случайные и систематические погрешности. Расчет общей (полной) абсолютной погрешности измерения дело непростое, так как эти погрешности разной природы.

    Для инженерных измерений имеет смысл суммировать систематическую и случайную абсолютные погрешности

    .

    Для простоты расчетов принято оценивать полную абсолютную погрешность как сумму абсолютной случайной и абсолютной систематической (приборной) погрешностей, если погрешности одного порядка величины, и пренебрегать одной из погрешностей, если она более чем на порядок (в 10 раз) меньше другой.

    6). Округляется погрешность и результат . Поскольку результат измерений представляется в виде интервала значений, величину которого определяет полная абсолютная погрешность, важное значение имеет правильное округление результата и погрешности.

    Округление начинают с абсолютной погрешности!!! Число значащих цифр, которое оставляют в значении погрешности, вообще говоря, зависит от коэффициента надежности и числа измерений. Однако даже для очень точных измерений (например, астрономических), в которых точное значение погрешности важно, не оставляют более двух значащих цифр. Бóльшее число цифр не имеет смысла, так как определение погрешности само имеет свою погрешность. В нашем практикуме сравнительно небольшой коэффициент надежности и малое число измерений. Поэтому при округлении (с избытком) полной абсолютной погрешности оставляют одну значащую цифру.

    Разряд значащей цифры абсолоютной погрешности определяет разряд первой сомнительной цифры в значении результата. Следовательно, само значение результата нужно округлять (с поправкой) до той значащей цифры, разряд которой совпадает с разрядом значащей цифры погрешности . Сформулированное правило следует применять и в тех случаях, когда некоторые из цифр являются нулями.

    Если при измерении массы тела получен результат , то писать нули в конце числа 0,900 необходимо. Запись означала бы, что о следующих значащих цифрах ничего не известно, в то время как измерения показали, что они равны нулю.

    7). Вычисляется относительная погрешность .

    При округлении относительной погрешности достаточно оставить две значащие цифры.

    р езультат серии измерений некоторой физической величины представляют в виде интервала значений с указанием вероятности попадания истинного значения в данный интервал, то есть результат необходимо записать в виде:

    Здесь – полная, округленная до первой значащей цифры, абсолютная погрешность и – округленное с учетом уже округленной погрешности среднее значение измеряемой величины. При записи результата измерений обязательно нужно указать единицу измерения величины.

    Рассмотрим несколько примеров:

    1. Пусть при измерении длины отрезка мы получили следующий результат: см и см. Как грамотно записать результат измерений длины отрезка? Сначала округляем с избытком абсолютную погрешность, оставляя одну значащую цифру см. Значащая цифра погрешности в разряде сотых. Затем округляем с поправкой среднее значение с точностью до сотых, т. е. до той значащей цифры, разряд которой совпадает с разрядом значащей цифры погрешности см. Вычисляем относительную погрешность

    .

    см; ; .

    2. Пусть при расчете сопротивления проводника мы получили следующий результат: и . Сначала округляем абсолютную погрешность, оставляя одну значащую цифру . Затем округляем среднее значение с точностью до целых . Вычисляем относительную погрешность

    .

    Результат измерений записываем так:

    ; ; .

    3. Пусть при расчете массы груза мы получили следующий результат: кг и кг. Сначала округляем абсолютную погрешность, оставляя одну значащую цифру кг. Затем округляем среднее значение с точностью до десятков кг. Вычисляем относительную погрешность

    .

    .

    Вопросы и задачи по теории погрешностей

    1. Что значит измерить физическую величину? Приведите примеры.

    2. Почему возникают погрешности измерений?

    3. Что такое абсолютная погрешность?

    4. Что такое относительная погрешность?

    5. Какая погрешность характеризует качество измерения? Приведите примеры.

    6. Что такое доверительный интервал?

    7. Дайте определение понятию «систематическая погрешность».

    8. Каковы причины возникновения систематических погрешностей?

    9. Что такое класс точности измерительного прибора?

    10. Как определяются абсолютные погрешности различных физических приборов?

    11. Какие погрешности называются случайными и как они возникают?

    12. Опишите процедуру вычисления средней квадратичной погрешности.

    13. Опишите процедуру расчета абсолютной случайной погрешности прямых измерений.

    14. Что такое «коэффициент надежности»?

    15. От каких параметров и как зависит коэффициент Стьюдента?

    16. Как рассчитывается полная абсолютная погрешность прямых измерений?

    17. Напишите формулы для определения относительной и абсолютной погрешностей косвенных измерений.

    18. Сформулируйте правила округления результата с погрешностью.

    19. Найдите относительную погрешность измерения длины стены при помощи рулетки с ценой деления 0,5см. Измеренная величина составила 4,66м.

    20. При измерении длины сторон А и В прямоугольника были допущены абсолютные погрешности ΔА и ΔВ соответственно. Напишите формулу для расчета абсолютной погрешности ΔS, полученной при определении площади по результатам этих измерений.

    21. Измерение длины ребра куба L имело погрешность ΔL. Напишите формулу для определения относительной погрешности объема куба по результатам этих измерений.

    22. Тело двигалось равноускоренно из состояния покоя. Для расчета ускорения измерили путь S, пройденный телом, и время его движения t. Абсолютные погрешности этих прямых измерений составили соответственно ΔS и Δt. Выведите формулу для расчета относительной погрешности ускорения по этим данным.

    23. При расчете мощности нагревательного прибора по данным измерений получены значения Рср = 2361,7893735 Вт и ΔР = 35,4822 Вт. Запишите результат в виде доверительного интервала, выполнив необходимое округление.

    24. При расчете величины сопротивления по данным измерений получены следующие значения: Rср = 123,7893735 Ом, ΔR = 0,348 Ом. Запишите результат в виде доверительного интервала, выполнив необходимое округление.

    25. При расчете величины коэффициента трения по данным измерений получены значения μср = 0,7823735 и Δμ = 0,03348. Запишите результат в виде доверительного интервала, выполнив необходимое округление.

    26. Ток силой 16,6 А определялся по прибору с классом точности 1,5 и номиналом шкалы 50 А. Найдите абсолютную приборную и относительную погрешности этого измерения.

    27. В серии из 5 измерений периода колебаний маятника получились следующие значения: 2,12 с, 2,10 с, 2,11 с, 2,14 с, 2,13 с. Найдите абсолютную случайную погрешность определения периода по этим данным.

    28. Опыт падения груза с некоторой высоты повторяли 6 раз. При этом получались следующие величины времени падения груза: 38,0 с, 37,6 с, 37,9 с, 37,4 с, 37,5 с, 37,7 с. Найдите относительную погрешность определения времени падения.

    Цена деления – это измеряемая величина, вызывающая отклонение указателя на одно деление. Цена деления определяется как отношение верхнего предела измерения прибора к числу делений шкалы.

    Абсолютная и относительная погрешность

    Элементы теории погрешностей

    Точные и приближенные числа

    Точность числа, как правило, не вызывает сомнений, когда речь идет о целых значениях данных(2 карандаша, 100 деревьев). Однако, в большинстве случаев, когда точное значение числа указать невозможно (например, при измерении предмета линейкой, снятии результатов с прибора и т.п.), мы имеем дело с приближенными данными.

    Приближенным значениемназывается число, незначительно отличающееся от точного значения и заменяющее его в вычислениях. Степень отличия приближенного значения числа от его точного значения характеризуется погрешностью .

    Различают следующие основные источники погрешностей:

    1. Погрешности постановки задачи , возникающие в результате приближенного описания реального явления в терминах математики.

    2. Погрешности метода , связанные с трудностью или невозможностью решения поставленной задачи и заменой ее подобной, такой, чтобы можно было применить известный и доступный метод решения и получить результат, близкий к искомому.

    3. Неустранимые погрешности , связанные с приближенными значениями исходных данных и обусловленные выполнением вычислений над приближенными числами.

    4. Погрешности округления , связанные с округлением значений исходных данных, промежуточных и конечных результатов, получаемых с применением вычислительных средств.


    Абсолютная и относительная погрешность

    Учет погрешностей является важным аспектом применения численных методов, поскольку погрешность конечного результата решения всей задачи является продуктом взаимодействия всех видов погрешностей. Поэтому одной из основных задач теории погрешностей является оценка точности результата на основании точности исходных данных.

    Если – точное число и – его приближенное значение, то погрешностью (ошибкой) приближенного значения является степень близости его значения к его точному значению .

    Простейшей количественной мерой погрешности является абсолютная погрешность, которая определяется как

    (1.1.2-1)

    Как видно из формулы 1.1.2-1, абсолютная погрешность имеет те же единицы измерения, что и величина . Поэтому по величине абсолютной погрешности далеко не всегда можно сделать правильное заключение о качестве приближения. Например, если , а речь идет о детали станка, то измерения являются очень грубыми, а если о размере судна, то – очень точными. В связи с этим введено понятие относительной погрешности, в котором значение абсолютной погрешности отнесено к модулю приближенного значения ().

    (1.1.2-2)

    Использование относительных погрешностей удобно, в частности, тем, что они не зависят от масштабов величин и единиц измерений данных. Относительная погрешность измеряется в долях или процентах. Так, например, если

    , то , а если и ,

    то тогда .

    Чтобы численно оценить погрешность функции, требуется знать основные правила подсчета погрешности действий:

    · при сложении и вычитании чисел абсолютные погрешности чисел складываются

    · при умножении и делении чисел друг на друга складываются их относительные погрешности


    · при возведении в степень приближенного числа его относительная погрешность умножается на показатель степени

    Пример 1.1.2-1. Дана функция: . Найти абсолютную и относительную погрешности величины (погрешность результата выполнения арифметических операций), если значения известны, а 1 – точное число и его погрешность равна нулю.

    Определив, таким образом, значение относительной погрешности, можно найти значение абсолютной погрешности, как , где величина вычисляется по формуле при приближенных значениях

    Поскольку точное значение величины обычно неизвестно, то вычисление и по приведенным выше формулам невозможно. Поэтому на практике проводят оценку предельных погрешностей вида:

    (1.1.2-3)

    где и – известные величины, которые являются верхними границами абсолютной и относительной погрешностей, иначе их называют – предельная абсолютная и предельная относительная погрешности. Таким образом, точное значение лежит в пределах:

    Если величина известна, то , а если известна величина , то

    Оценка погрешностей результатов измерений

    Погрешности измерений и их типы

    Любые измерения всегда производятся с какими-то погрешностями, связанными с ограниченной точностью измерительных приборов, неправильным выбором, и погрешностью метода измерений, физиологией экспериментатора, особенностями измеряемых объектов, изменением условий измерения и т. д. Поэтому в задачу измерения входит нахождение не только самой величины, но и погрешности измерения, т. е. интервала, в котором вероятнее всего находится истинное значение измеряемой величины. Например, при измерении отрезка времени t секундомером с ценой деления 0,2 с можно сказать, что истинное значение его находится в интервале от https://pandia.ru/text/77/496/images/image002_131.gif" width="85" height="23 src=">с..gif" width="16" height="17 src="> и X – соответственно истинное и измеренное значения исследуемой величины. Величина называется абсолютной погрешностью (ошибкой) измерения, а выражение , характеризующее точность измерения, называется относительной погрешностью.

    Вполне естественно стремление экспериментатора произвести всякое измерение с наибольшей достижимой точностью, однако такой подход не всегда целесообразен. Чем точнее мы хотим измерить ту ил иную величину, тем сложнее приборы мы должны использовать, тем больше времени потребуют эти измерения. Поэтому точность окончательного результата должна соответствовать цели проводимого эксперимента. Теория погрешностей дает рекомендации, как следует вести измерения и как обрабатывать результаты, чтобы величина погрешности была минимальной.

    Все возникающие при измерениях погрешности обычно разделяют на три типа – систематические, случайные и промахи, или грубые ошибки.

    Систематические погрешности обусловлены ограниченной точностью изготовления приборов (приборные погрешности), недостатками выбранного метода измерений, неточностью расчетной формулы, неправильной установкой прибора и т. д. Таким образом, систематические погрешности вызываются факторами, действующими одинаковым образом при многократном повторении одних и тех же измерений. Величина этой погрешности систематически повторяется либо изменяется по определенному закону. Некоторые систематические ошибки могут быть исключены (на практике этого всегда легко добиться) путем изменения метода измерений, введение поправок к показаниям приборов, учета постоянного влияния внешних факторов.

    Хотя систематическая (приборная) погрешность при повторных измерениях дает отклонение измеряемой величины от истинного значения в одну сторону, мы никогда не знаем в какую именно. Поэтому приборная погрешность записывается с двойным знаком

    Случайные погрешности вызываются большим числом случайных причин (изменением температуры, давления, сотрясения здания и т. д.), действия которых на каждое измерение различно и не может быть заранее учтено. Случайные погрешности происходят также из-за несовершенства органов чувств экспериментатора. К случайным погрешностям относятся и погрешности обусловленные свойствами измеряемого объекта.

    Исключить случайны погрешности отдельных измерений невозможно, но можно уменьшить влияние этих погрешностей на окончательный результат путем проведения многократных измерений. Если случайная погрешность окажется значительно меньше приборной (систематической), то нет смысла дальше уменьшать величину случайной погрешности за счет увеличения числа измерений. Если же случайная погрешность больше приборной, то число измерений следует увеличить, чтобы уменьшить значение случайной погрешности и сделать ее меньше или одного порядка с погрешностью прибора.

    Промахи, или грубые ошибки, - это неправильные отсчеты по прибору, неправильная запись отсчета и т. п. Как правило, промахи, обусловленные указанными причинами хорошо заметны, так как соответствующие им отсчеты резко отличаются от других отсчетов. Промахи должны быть устранены путем контрольных измерений. Таким образом, ширину интервала в котором лежат истинные значения измеряемых величин, будут определять только случайные и систематические погрешности.

    2. Оценка систематической (приборной) погрешности

    При прямых измерениях значение измеряемой величины отсчитывается непосредственно по шкале измерительного прибора. Ошибка в отсчете может достигать нескольких десятых долей деления шкалы. Обычно при таких измерениях величину систематической погрешности считают равной половине цены деления шкалы измерительного прибора. Например, при измерении штангенциркулем с ценой деления 0,05 мм величина приборной погрешности измерения принимают равной 0,025 мм.

    Цифровые измерительные приборы дают значение измеряемых ими величин с погрешностью, равной значению одной единицы последнего разряда на шкале прибора. Так, если цифровой вольтметр показывает значение20,45 мВ, то абсолютная погрешность при измерении равна мВ.

    Систематические погрешности возникают и при использовании постоянных величин, определяемых из таблиц. В подобных случаях погрешность принимается равной половине последнего значащего разряда. Например, если в таблице значение плотности стали дается величиной, равной 7,9∙103 кг/м3, то абсолютная погрешность в этом случае равна https://pandia.ru/text/77/496/images/image009_52.gif" width="123" height="24 src=">используется формула

    , (1)

    где https://pandia.ru/text/77/496/images/image012_40.gif" width="16" height="24">, - частные производные функции по переменной https://pandia.ru/text/77/496/images/image014_34.gif" width="65 height=44" height="44">.

    Частные производные по переменным d и h будут равны

    Https://pandia.ru/text/77/496/images/image017_27.gif" width="71" height="44 src=">.

    Таким образом, формула для определения абсолютной систематической погрешности при измерении объема цилиндра в соответствии с имеет следующий вид

    ,

    где и приборные ошибки при измерении диаметра и высоты цилиндра

    3. Оценка случайной погрешности.

    Доверительный интервал и доверительная вероятность

    https://pandia.ru/text/77/496/images/image016_30.gif" width="12 height=23" height="23">.gif" width="45" height="21 src="> - функция распределения случайных ошибок (погрешностей), характеризующая вероятность появления ошибки , σ – средняя квадратичная ошибка.

    Величина σ не является случайной величиной и характеризует процесс измерений. Если условия измерений не изменяются, то σ остается постоянной величиной. Квадрат этой величины называют дисперсией измерений. Чем меньше дисперсия, тем меньше разброс отдельных значений и тем выше точность измерений.

    Точное значение средней квадратичной ошибки σ, как и истинное значение измеряемой величины, неизвестно. Существует так называемая статистическая оценка этого параметра, в соответствии с которой средняя квадратичная ошибка равняется средней квадратичной ошибке среднего арифметического . Величина которой определяется по формуле

    , (3)

    где https://pandia.ru/text/77/496/images/image027_14.gif" width="15" height="17">- среднее арифметическое полученных значений; n – число измерений.

    Чем больше число измерений, тем меньше https://pandia.ru/text/77/496/images/image027_14.gif" width="15" height="17 src=">, а случайная абсолютная погрешность , то результат измерений запишется в виде https://pandia.ru/text/77/496/images/image029_11.gif" width="45" height="19"> до , в который попадает истинное значение измеряемой величины μ, называется доверительным интервалом. Поскольку https://pandia.ru/text/77/496/images/image025_16.gif" width="19 height=24" height="24"> близка к σ. Для отыскания доверительного интервала и доверительной вероятности при небольшом числе измерений, с которым мы имеем дело в ходе выполнения лабораторных работ , используется распределение вероятностей Стьюдента. Это распределение вероятностей случайной величины , называемой коэффициентом Стьюдента , дает значение доверительного интервала в долях средней квадратичной ошибки среднего арифметического .

    Распределение вероятностей этой величины не зависит от σ2, а существенно зависит от числа опытов n. С увеличением числа опытов n распределение Стьюдента стремится к распределению Гаусса.

    Функция распределения табулирована (табл.1). Значение коэффициента Стьюдента находится на пересечении строки, соответствующей числу измерений n , и столбца, соответствующего доверительной вероятности α

    Таблица 1.

    Пользуясь данными таблицы, можно:

    1) определить доверительный интервал, задаваясь определенной вероятностью;

    2) выбрать доверительный интервал и определить доверительную вероятность.

    При косвенных измерениях среднюю квадратичную ошибку среднего арифметического значения функции вычисляют по формуле

    . (5)

    Доверительный интервал и доверительная вероятность определяются так же, как и в случае прямых измерений.

    Оценка суммарной погрешности измерений. Запись окончательного результата.

    Суммарную погрешность результата измерений величины Х будем определять как среднее квадратичное значение систематической и случайной погрешностей

    , (6)

    где δх – приборная погрешность, Δх – случайная погрешность.

    В качестве Х может быть как непосредственно, так и косвенно измеряемая величина.

    , α=…, Е=… (7)

    Следует иметь в виду, что сами формулы теории ошибок справедливы для большого число измерений. Поэтому значение случайной, а следовательно, и суммарной погрешности определяется при малом n с большой ошибкой. При вычислении Δх при числе измерений рекомендуется ограничиваться одной значащей цифрой, если она больше 3 и двумя, если первая значащая цифра меньше 3. Например, если Δх = 0,042, то отбрасываем 2 и пишем Δх =0,04, а если Δх =0,123, то пишем Δх =0,12.

    Число разрядов результата и суммарной погрешности должно быть одинаковым. Поэтому среднее арифметическое погрешности должно быть одинаковым. Поэтому среднее арифметическое вычисляется вначале на один разряд больше, чем измерение, а при записи результата его значение уточняется до числа разрядов суммарной ошибки.

    4. Методика расчета погрешностей измерений.

    Погрешности прямых измерений

    При обработке результатов прямых измерений рекомендуется принять следующий порядок выполнение операций.

    Проводятся измерения заданного физического параметра n раз в одинаковых условиях, и результаты записываются в таблицу. Если результаты некоторых измерений резко отличаются по своему значению от остальных измерений, то они как промахи отбрасываются, если после проверки не подтверждаются. Вычисляется среднее арифметическое из n одинаковых измерений. Оно принимается за наиболее вероятное значение измеряемой величины

    Находятся абсолютные погрешности отдельных измерений Вычисляются квадраты абсолютных погрешностей отдельных измерений (Δх i)2 Определяется средняя квадратичная ошибка среднего арифметического

    .

    Задается значение доверительной вероятности α. В лабораториях практикума принято задавать α=0,95. Находится коэффициент Стьюдента для заданной доверительной вероятности α и числа произведенных измерений (см. табл.) Определяется случайная погрешность

    Определяется суммарная погрешность

    Оценивается относительная погрешность результата измерений

    .

    Записывается окончательный результат в виде

    С α=… Е=…%.

    5. Погрешность косвенных измерений

    При оценке истинного значения косвенно измеряемой величины https://pandia.ru/text/77/496/images/image045_6.gif" width="75" height="24">, можно использовать два способа.

    Первый способ используется, если величина y определяется при различных условиях опыта. В этом случае для каждого из значений вычисляется , а затем определяется среднее арифметическое из всех значений yi

    Систематическая (приборная) погрешность находится на основании известных приборных погрешностей всех измерений по формуле. Случайная погрешность в этом случае определяется как ошибка прямого измерения.

    Второй способ применяется, если данная функция y определяется несколько раз при одних и тех же измерений..gif" width="75" height="24">. В нашем лабораторном практикуме чаще используется второй способ определения косвенно измеряемой величины y. Систематическая (приборная) погрешность, как и при первом способе, находится на основании известных приборных погрешностей всех измерений по формуле

    . (10)

    Для нахождения случайной погрешности косвенного измерения вначале рассчитываются средние квадратичные ошибки среднего арифметического отдельных измерений. Затем находится средняя квадратичная ошибка величины y. Задание доверительной вероятности α, нахождение коэффициента Стьюдента https://pandia.ru/text/77/496/images/image048_2.gif" width="83" height="23">, с α=… Е=…%.

    6. Пример оформления лабораторной работы

    Лабораторная работа №1

    ОПРЕДЕЛЕНИЕ ОБЪЕМА ЦИЛИНДРА

    Принадлежности: штангенциркуль с ценой деления 0,05 мм, микрометр с ценой деления 0,01 мм, цилиндрическое тело.

    Цель работы: ознакомление с простейшими физическими измерениями, определение объема цилиндра, расчет погрешностей прямых и косвенных измерений.

    Провести не менее 5 раз измерения штангенциркулем диаметра цилиндра, а микрометром его высоту.

    Расчетная формула для вычисления объема цилиндра

    где d – диаметр цилиндра; h – высота.

    Результаты измерений

    Таблица 2.

    № измерения

    5.4. Вычисление суммарной погрешности

    Абсолютная погрешность

    ; .

    5. Относительная погрешность, или точность измерений

    ; Е = 0,5%.

    6. Запись окончательного результата

    Окончательный результат для исследуемой величины записывается в виде

    Примечание. В окончательной записи число разрядов результата и абсолютной погрешности должно быть одинаковым.

    6. Графическое представление результатов измерений

    Результаты физических измерений очень часто представляют в графической форме. Графики обладают рядом важных преимуществ и ценных свойств:

    а) дают возможность определить вид функциональной зависимости и пределы, в которых она справедлива;

    б) позволяют наглядно проводить сравнение экспериментальных данных с теоретической кривой;

    в) при построении графика сглаживают скачки в ходе функции, возникающие за счет случайных ошибок;

    г) дают возможность определять некоторые величины или проводить графическое дифференцирование , интегрирование, решение уравнения и др.

    Графики, как правило, выполняются на специальной бумаге (миллиметровой, логарифмической, полулогарифмической). Принято по горизонтальной оси откладывать независимую переменную, т. е. величину, значение которой задает сам экспериментатор, а по вертикальной оси – ту величину, которую он при этом определяет. Следует иметь в виду, что пересечение координатных осей не обязательно должно совпадать с нулевыми значениями x и у. При выборе начала координат следует руководствоваться тем, чтобы полностью использовалась вся площадь чертежа (рис.2.).

    На координатах осях графика указываются не только названия или символы величин, но и единицы их измерения. Масштаб по осям координат следует выбирать так, чтобы измеряемые точки располагались по всей площади листа. При этом масштаб должен быть простым, чтобы при нанесении точек на график не производить арифметических подсчетов в уме.

    Экспериментальные точки на графике должны изображаться точно и ясно. Точки, полученные при различных условиях эксперимента (например, при нагревании и охлаждении), полезно наносить разными цветами или разными значками. Если известна погрешность эксперимента, то вместо точки лучше изображать крест или прямоугольник, размеры которого по осям соответствуют этой погрешности. Не рекомендуется соединять экспериментальные точки между собой ломаной линией. Кривую на графике следует проводить плавно, следя за тем, чтобы экспериментальные точки располагались как выше, так и ниже кривой, как показано на рис.3.

    При построении графиков помимо системы координат с равномерным масштабом применяют так называемые функциональные масштабы. Подобрав подходящие функции x и y, можно на графике получить более простую линию, чем при обычном построении. Часто это бывает нужно при подборе к данному графику формулы для определения его параметров. Функциональные масштабы применяют также в тех случаях, когда на графике нужно растянуть или сократить какой-либо участок кривой. Чаще всего из функциональных масштабов используют логарифмический масштаб (рис.4).

    1. Введение

    Работа химиков, физиков и представителей других естественно-научных профессий часто связана с выполнением количественных измерений различных величин. При этом возникает вопрос анализа достоверности получаемых значений, обработки результатов непосредственных измерений и оценки погрешностей расчетов, в которых используются значения непосредственно измеряемых характеристик (последний процесс также называется обработкой результатов косвенных измерений). По целому ряду объективных причин знания выпускников химического факультета МГУ о расчете погрешностей не всегда достаточны для правильной обработки получаемых данных. В качестве одной из таких причин можно назвать отсутствие в учебном плане факультета курса по статистической обработке результатов измерений.

    К данному моменту вопрос вычисления погрешностей, безусловно, изучен исчерпывающе. Существует большое количество методических разработок, учебников и т.д., в которых можно почерпнуть информацию о расчете погрешностей. К сожалению, большинство подобных работ перегружено дополнительной и не всегда нужной информации. В частности, большинство работ студенческих практикумов не требует таких действий, как сравнение выборок, оценка сходимости и др. Поэтому кажется целесообразным создание краткой разработки, в которой изложены алгоритмы наиболее часто употребляемых вычислений, чему и посвящена данная разработка.

    2. Обозначения, принятые в данной работе

    Измеряемая величина, -среднее значение измеряемой величины, - абсолютная погрешность среднего значения измеряемой величины, - относительная погрешность среднего значения измеряемой величины.

    3. Расчет погрешностей непосредственных измерений

    Итак, предположим, что были проведены n измерений одной и той же величины в одних и тех же условиях. В этом случае можно рассчитать среднее значение этой величины в проведенных измерениях:

    (1)

    Как вычислить погрешность ? По следующей формуле:

    (2)

    В этой формуле используется коэффициент Стьюдента . Его значения при разных доверительных вероятностях и значениях приведены в .

    3.1. Пример расчета погрешностей непосредственных измерений:

    Задача.

    Проводили измерения длины металлического бруска. Было сделано 10 измерений и получены следующие значения: 10 мм, 11 мм, 12 мм, 13 мм, 10 мм, 10 мм, 11 мм, 10 мм, 10 мм, 11 мм. Требуется найти среднее значение измеряемой величины (длины бруска) и его погрешность .

    Решение.

    С использованием формулы (1) находим:

    мм

    Теперь с использованием формулы (2) найдем абсолютную погрешность среднего значения при доверительной вероятности и числе степеней свободы (используем значение =2,262, взятое из ):


    Запишем результат:

    10,8±0,7 0.95 мм

    4. Расчет погрешностей косвенных измерений

    Предположим, что в ходе эксперимента измеряются величины , а затем c использованием полученных значений вычисляется величина по формуле . При этом погрешности непосредственно измеряемых величин рассчитываются так, как это было описано в пункте 3.

    Расчет среднего значения величины производится по зависимости с использованием средних значений аргументов .

    Погрешность величины рассчитывается по следующей формуле:

    ,(3)

    где - количество аргументов , - частные производные функции по аргументам , - абсолютная погрешность среднего значения аргумента .

    Абсолютная погрешность, как и в случае с прямыми измерениями, рассчитывается по формуле .

    4.1. Пример расчета погрешностей непосредственных измерений:

    Задача.

    Было проведено 5непосредственных измерений величин и . Для величины получены значения: 50, 51, 52, 50, 47; для величины получены значения: 500, 510, 476, 354, 520. Требуется рассчитать значение величины , определяемой по формуле и найти погрешность полученного значения.